
A Formal Method for Including the Probability
of Erroneous Human Task Behavior in System Analyses

Matthew L. Boltona,∗, Xi Zhenga, Eunsuk Kangb

aUniversity at Buffalo, State University of New York, Department of Industrial and Systems Engineering, Buffalo, NY, USA
bInstitute for Software Research, School of Computer Science, Carnegie Mellon University, NY, USA

Abstract

Formal methods have been making inroads into the engineering of human-automation interaction (HAI) by allowing engineers to use
mathematical proofs to determine whether normative or unanticipated erroneous human behavior can ever cause problems. However,
these approaches are limited because they do not give engineers a way to assess the relative likelihood of different outcomes. In this
work, we address this shortcoming by defining a new approach that combines formal approaches with human reliability analysis
and probabilistic and statistical model checking. This approach ultimately allows analysts to compute the probability of different
outcomes occurring in reactive HAI systems. We describe how this method was realized, assess its scalability, and demonstrate its
capabilities with an automated teller machine example. We ultimately discuss our results and describe directions of future research.

Keywords: Human error, formal methods, model checking, probabilistic modeling, human reliability.

1. Introduction

Human error is regularly cited as a source of failure and
performance issues in modern systems. It has contributed to
more than 1,000,000 injuries and between 44,000 and 98,000
deaths annually in medicine (Kohn et al., 2000); roughly 75% of
all accidents in general aviation and 50% in commercial aviation
(Kebabjian, 2018; Kenny, 2015); one third of unmanned aerial
system (UAS) accidents (Manning et al., 2004); 90% of auto-
mobile crashes (NHTSA, 2008); and high profile disasters like
the accident at Three Mile Island (Le Bot, 2004). Humans are
often blamed for failures associated with human error. However,
the modern perspective holds that errors are the result of short-
comings in system design and thus not solely the fault of human
operators, if they are the fault of the human at all. Unfortunately,
the complexity of human-automation interaction (HAI) systems
and the inherent concurrency that exists in HAI can make it
extremely difficult to predict when and how erroneous human
behaviors can cause problems. For this reason, a growing body
of research has been investigating how rigorous analyses from
formal methods can be used to evaluate and design HAI (Bolton,
2017a; Bolton et al., 2013; Weyers et al., 2017). In particular,
techniques have been discovered that enable an analyst to pair
models of human tasks (a normative description of the behavior
humans use to achieve goals when interacting with a system)
with models of system functionality. Verification techniques are
then used to determine if normative or erroneous human behav-
ior (based on systematic deviations from normative tasks) can
result in safety violations (Aı̈t-Ameur and Baron, 2006; Barbosa

∗Corresponding author
Email address: mbolton@buffalo.edu (Matthew L. Bolton)

et al., 2011; Bastide and Basnyat, 2007; Bolton and Bass, 2017;
Fields, 2001; Paternò and Santoro, 2001).

These techniques are powerful and well-suited to discover-
ing design flaws in HAIs, especially those involving potentially
unanticipated erroneous human behaviors, and thus suggesting
interventions that improve system reliability. However, they
do have limitations. In particular, they do not account for the
relative likelihood of different erroneous behaviors. This sit-
uation can make it difficult for analysts to prioritize how to
address discovered problems. This research seeks to address this
deficiency by extending concepts from formal, task-based, veri-
fication methods with concepts from human reliability analysis
(HRA) and probabilistic / statistical model checking (methods
for formally verifying stochastic systems). In what follows, we
cover the background necessary for understanding our approach,
we describe our method, we analyze a proof of concept example
[an automated teller machine (ATM)] to check that our method
is providing valid results. Finally, we discuss our developments
and discuss directions for future work.

2. Background

2.1. Formal Methods

Formal methods is a sub-domain of computer science con-
cerned with mathematically modeling systems with precise lan-
guages, specifying desirable system properties, and verifying
(proving) whether the properties hold with the system. Model
checking (Clarke et al., 1999) is computer software that performs
formal verification automatically, where efficient data structures
and algorithms are used to search through a system model’s state
space to exhaustively determine if specification properties hold.

Preprint submitted to Reliability Engineering and System Safety April 10, 2021

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0951832021002921
Manuscript_a7befbf58db4495dea057fa219a35b87

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0951832021002921

The majority of formal methods are non-stochastic. Emerg-
ing techniques such as probabilistic and statistical model check-
ing enable analysts to account for probabilities in formal verifi-
cation (Kwiatkowska et al., 2007). In these, stochastic models
(such as Markov chains) are used to describe system behavior
and the specification properties either describe desirable system
properties (which can include probabilities) or request that a
probability be computed. Verification then proves whether the
specification property holds for the entire model or computes the
probability requested in the property. Statistical model check-
ing only differs from probabilistic checking in that, instead of
verifying a property against the entire system model, statistical
checking checks the property against a number of samples/traces
through the model. This produces approximate results. For situ-
ations where the property is computing a probability, this means
that statistical checking produces a probability value and an
accurate confidence interval (CI) for it.

2.2. Formal and Task-analytic Methods
Formal methods (and especially model checking) are adept

at discovering unexpected interactions that can cause system fail-
ures. Because of this, a growing literature has been investigating
how formal methods can be used to engineer HAI. Comprehen-
sive reviews can be found in (Bolton, 2017a; Bolton et al., 2013;
Weyers et al., 2017). Due to topicality, what follows focuses on
formal methods that have used task analytic methods and as well
as those that have attempted to model human error stochastically.

Task analysis is a systematic process human factors engi-
neers use to describe how humans normatively achieve goals
with a system as a task model (Schraagen et al., 2000). Task
models can be interpreted formally and thus included in larger
formal analyses. This means that formal verification can prove
whether human behavior captured in task models can cause per-
formance and safety issues and be used to investigate solutions
to problems. Task models can be formally modeled manually
(Basnyat et al., 2007; Gunter et al., 2009). However, it is more
common to automatically translate tasks represented in their
own notations into a formalism where other system behavior is
described (Aı̈t-Ameur and Baron, 2006; Bolton and Bass, 2010a;
Bolton et al., 2011; Fields, 2001; Palanque et al., 1996; Paternò
and Santoro, 2001).

Additionally, researchers have discovered a number of ap-
proaches for injecting or generating human error into previously
normative task models so that the impact of both anticipated and
potentially unanticipated erroneous behaviors can be accounted
for in verifications. These approaches either use mutation pat-
terns (which are manually applied to task models by analysts) or
different theories or taxonomies of human error to automatically
include deviations from task in formal representations (Barbosa
et al., 2011; Bastide and Basnyat, 2007; Bolton, 2015; Bolton
and Bass, 2011, 2013a,b; Bolton et al., 2012, 2019; Fields, 2001;
Pan and Bolton, 2018).

Because of its support for including human behavior in for-
mal verification analyses, especially as it relates to the automated
generation of potentially unanticipated human errors, we use the
enhanced operator function model (EOFM) for task modeling in
this research. We discuss EOFM next.

2.2.1. The Enhanced Operator Function Model
EOFM (Bolton et al., 2011) is an XML-based task mod-

eling formalism where human behavior is captured as an in-
put/output model. Inputs are system elements external to the
human (e.g., interface display information and observable envi-
ronment elements). Outputs are human actions. The operators’
tasks describe how human actions occur based on input and local
variables, where local variables represent the human’s perceptual
or cognitive state.

Tasks are a hierarchy of activities and actions (acts) start-
ing with a root activity. Any activity (which represents a goal-
directed complex behavior) can decomposes into sub-activities
and, ultimately, atomic actions (concrete cognitive or observable
behaviors that are not further broken down). Strategic knowl-
edge (Boolean expressions) can be specified for each activity
using input and local variables. An activity can have three dif-
ferent conditions asserting what must be true for the activity
to start executing (Precondition); repeat (RepeatCondition), or
complete (CompletionCondition).

A decomposition has an operator that constrains how many
of the acts in that decomposition can execute as well as the (or-
dinal) temporal relationships between them. EOFM supports ten
such operators, those topical to the paper are shown in Table 1.

Atomic human actions or internal actions (representing cog-
nitive or perceptual behaviors) occur at the bottom of every task.
Human actions can have one of three behaviors: AutoReset ac-
tions occur as a single event; Toggle actions switch between
occurring and not occurring; and SetValue actions commit some
value to the other parts of the system. Internal actions allow
cognitive behaviors (such as remembering something) to be
modeled by assigning values to local variable.

To enable unambiguous interpretation of EOFM behavior,
EOFMs have formal semantics (Bolton et al., 2011, 2016). In
this, every act is interpreted as a state machine (Fig. 1) with
three states: Ready, Executing, and Done. All acts start in Ready.
They transition between states based on whether the Boolean
conditions on the labeled transitions (Fig. 1) are true. When

Table 1: Decomposition Operators (Bolton and Bass, 2011)

Operator Description

optor seq Zero or more of the activities or actions in the decomposition
must execute in any order, one at a time.

optor par Zero or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

or seq One or more of the activities or actions in the decomposition
must execute in any order one at a time.

or par One or more of the activities or actions in the decomposition
must execute in any order and can execute in parallel.

and seq All activities or actions in the decomposition must execute in
any order, one at a time.

and par All activities or actions in the decomposition must execute in
any order and can execute in parallel.

xor Exactly one activity or action in the decomposition executes.

ord All activities or actions must execute in the order (left to right)
they appear in the decomposition.

2

(a)

(b)

Reset

StartCondition ˄ Precondition

˄ ¬ CompletionCondition

StartCondition

˄ CompletionCondition

EndCondition

˄ CompletionCondition

EndCondition ˄ RepeatCondition ˄¬ CompletionCondition with Reset

Executing

Ready

Done

Reset StartCondition

EndCondition
Executing

Ready

Done

State

Transition

Initial State

Legend

Figure 1: EOFM transition semantics. (a) Transition semantics for an EOFM
activity. (b) Transition semantics for an EOFM action.

an action is Executing, this corresponds to an output variable
associated with the action being set to the appropriate value. For
AutoReset actions this is a Boolean variable that is set to true.
For Toggle, the variable’s Boolean variable is set to the negation
of its current value. For SetValue behavior, the action’s output
variable is set to the value assigned in the model. The same
occurs when the action is a local variable assignment.

Any existent activity strategic knowledge conditions (Pre-
conditions, RepeatConditions, and CompletionConditions) par-
tially describe when transitions can occur. However, there are
three additional implicit conditions (based on the activity’s or
action’s task position) that also impact transitions.

The StartCondition indicates if an act can start executing
based on the states of its parent and siblings (acts in the same
decomposition) as well as the parent’s decomposition operator.
Mathematically, a StartCondition has the generic form:

StartCondition : parent.state = Executing
∧

∧
∀siblings s

(s.state 6= Executing) . (1)

If the parent’s decomposition allows for parallelism (the operator
ends with par), the second conjunct is eliminated. If the parent
has an ord decomposition, to enforce order, the second conjunct
requires that the previous sibling in the decomposition be done:
(prev sibling.state = Done). If the parent has an xor decomposi-
tion, the second conjunct is modified so that no other sibling can
execute after one has finished:

∧
∀siblings s (s.state = Ready) . An

activity without a parent (a top-level activity) will eliminate the
first conjunct. Top-level activities treat each other as siblings in

an and seq formulation for the second conjunct.
The EndCondition indicates if an act can stop executing

based on the execution state of its children:1

EndCondition :
⊙

∀subacts c
(c.state = Done)

∧
∧

∀subacts c
(c.state 6= Executing) . (2)

The first conjunct requires that the execution states of the ac-
tivity’s children satisfy the activity’s decomposition operator.
Here,

⊙
is generic and substituted with

∧
if the activity has an

and seq, and par, or ord decomposition. It is substituted with∨
for activities with or seq, or par, or xor decompositions. Be-

cause optor seq and optor par do not impose restrictions on the
number of children that can execute, the first conjunct is elim-
inated for either decomposition. The second conjunct always
specifies that no children are Executing.

The Reset describes when an activity can return to Ready.
It occurs in two situations. First, when an activity repeats (a
normative Executing-to-Executing transition), every descendant
act Resets. Second, any root activity automatically Resets from
Done. When this occurs, all descendants Reset.

The formal semantics of EOFM were used to create auto-
mated translation software that converted EOFM XML into the
input language of the Symbolic Analysis Laboratory (SAL),
a suite of non-probabilistic model checkers (Bolton and Bass,
2017; Bolton et al., 2011, 2016). This enables EOFM behavior
to be used as part of larger formal system analyses. As a result,
EOFM analyses have been used to assess the impact of nor-
mative human behavior on a number of automotive, aerospace,
and medical systems (Bolton and Bass, 2009a,b, 2010a, 2012).
EOFM has also been used to model and predict the impact of
erroneous human behavior.

2.2.2. EOFM and Erroneous Human Behavior
EOFM has been used to automatically generate human errors

using multiple theories (Bolton and Bass, 2010b, 2011, 2013a,b,
2017; Bolton et al., 2012). This culminated in EOFM serving as
the basis for the task-based taxonomy of erroneous human behav-
ior (Bolton, 2017b) and the associated error generation approach
(Bolton et al., 2019). The task-based taxonomy unifies the phe-
nomenological (what) and genotypical (why) perspectives by
classifying human error based on where they deviate from tasks.
By knowing where a deviation occurs in a task model (how the
task’s formal semantics were violated), one understands how the
error will observably manifest (the phenotype; Hollnagel 1993)
and why the error occurred (the strategic knowledge or inherent
condition the human improperly attended to; the genotype of
the slip; Reason 1990). In fact, the task-based taxonomy has
been shown to be complete with respect to both the leading phe-
nomenological (Hollnagel, 1993) and genomenological (Reason,
1990) taxonomies (Bolton, 2017b).

The task-based taxonomy has a hierarchical classification
that goes beyond what is relevant to this discussion (Bolton,
2017b). What is topical is that it distinguishes between semantic

1Because actions have no children, action EndConditions default to true.

3

True

With Reset

Ready

Done Executing

¬ StartCondition ˅ ¬ Precondition

˅ CompletionCondition

StartCondition

˄ ¬ CompletionCondition

¬ EndCondition

˅ ¬ CompletionCondition

¬ EndCondition ˅ ¬ RepeatCondition ˅ CompletionCondition With Reset

¬ StartCondition

StartCondition

¬ EndCondition

Ready

Executing

EndCondition

Done

True

(a)

(b) StartCondition

StartCondition ˄ Precondition

˄ ¬ CompletionCondition

EndCondition

˄ (CompletionCondition

 ˅ RepeatCondition

 ˄ ¬ CompletionCondition)

Intrusion

Omission

Restart

Delay

Legend

Figure 2: Task-based taxonomy of human error transition-based error modes.

violations that are transition-based (transitions that violate what
is in Fig. 1) and assignment-based (incorrect behavior assign-
ment to an action variable during action execution for SetValue
or local variable actions). Transition-based error modes describe
erroneous transitions between act execution states (see Fig. 2).
An intrusion happens when an act executes (transitions to Ex-
ecuting) when it should not. An omission manifests when an
activity finishes (transitions to Done) when it should not. A
restart occurs when an activity (but not an action) incorrectly
restarts: the activity resets and starts executing anew. Finally, a
delay happens when an act does not transition out of a state when
it should. In the execution-based erroneous behaviors, there can
be both value and target substitutions (for SetValue actions) and
misremembrances (for local variable assignments) (Table 2). In
a value substitution or misremembrance, an incorrect value is
assigned to the correct target variable (the action’s output or
local variable). In a target error, the correct value is assigned to
the wrong target (the wrong output or local variable).

This taxonomy was the basis for a method (Bolton et al.,
2019) to automatically generate erroneous behavior in model

Table 2: Action-level Erroneous Behavior Types

Assignment Erroneous Behavior Type

CorrectAction := IncorrectValue Action Value Substitution
IncorrectAction := CorrectValue Action Target Substitution

CorrectVariable := IncorrectValue Value Misremembrance
IncorrectVariable := CorrectValue Target Misremembrance

checking analyses to potentially discover (and fix) human errors
that could cause system failures. Specifically, this method would
modify the EOFM-to-SAL translator so that all erroneous transi-
tions (Fig. 2) and assignments (Table 2) could exist alongside
their normative counterparts (Fig. 1). A maximum (Max) on the
total number of errors included was used to keep models from
becoming completely unbounded. The net effect of this was that
analyses accounted for all of the different ways that Max errors
could occur when evaluating system safety.

This approach is powerful and particularly good at discov-
ering HAI design flaws that could interact with unanticipated
erroneous human behaviors. However, it does have limits. In
particular, it does not account for the relative likelihood of differ-
ent erroneous behaviors. This means that analyses may discover
errors that are extremely unlikely to occur. Thus, with no means
of ranking the relative probability of different errors, it can be
difficult for analysts to prioritize how to address discovered
problems. None of the formal verification work that has used
task analytic or cognitive human behavior has accounted for the
probabilities of different errors. To address this shortcoming, we
plan to use concepts from HRA.

2.3. HRA and CREAM
HRAs are used to predict human error rates. There are many

different HRAs (Bell and Holroyd, 2009). These generally fall
into two categories: those based on probabilistic risk assess-
ment (the first generation) and those based on cognition (the
second generation) (Di Pasquale et al., 2013). Third generation
techniques (which are discussed subsequently) exist, but use the
theoretical foundation of first- and second-generation methods.

First-generation methods like the Technique for Human Er-
ror Rate Prediction (THERP) (Swain, 1987) and the Human Er-
ror Assessment and Reduction Technique (HEART) (Williams,
1986) (among others) are useful. However, they generally treat
human errors the same as equipment failures. This limits their
applicability because they do not account for the effect of context
and organizational factors (Di Pasquale et al., 2013; Hollnagel,
1998a). Second-generation HRAs build off and improve on these
by considering the interactions inherent in complex systems (be-
tween humans, processes, organization, and the environment)
based on how they affect human cognition (Fujita and Hollnagel,
2004; Hollnagel, 1998a; Reer, 2008). CREAM is largely the pre-
ferred HRA by human factors engineers because it is rooted in a
well-established cognitive model and can thus explain why er-
rors occur (Blom et al., 2001; Di Pasquale et al., 2013; Hollnagel,
1998b; Stanton et al., 2001; Worm, 2001). Beyond this, CREAM
has been well validated over the years through its successful use
in nuclear power plants (Hollnagel et al., 1999), manufacturing
(Geng et al., 2015), radiation therapy (Castiglia et al., 2008),
hospitals (Rantanen et al., 2012), and many other critical do-
mains (Chen et al., 2019; Hollnagel, 1998a; Rashed, 2016; Yang
et al., 2013; Zhang et al., 2019; Zheng et al., 2020a,b, 2017).

In CREAM (Hollnagel, 1998a), analysts identify the major
tasks for working with a given system. The analysts then per-
form subjective assessments with subject matter experts. First,
common performance conditions (or CPCs) are assessed for
each task to understand how the work environment impacts the

4

Table 3: CREAM’s Cognitive Function Failures
(Hollnagel, 1998a)

Cognitive Function Cognitive Function Failure

Observation Wrong Object Observed
Wrong Identification
Observation Not Made

Interpretation Faulty Diagnosis
Decision Error
Delayed Interpretation

Planning Priority Error
Inadequate Plan

Execution Action of Wrong Type
Action of Wrong Time
Action on Wrong Object
Action Out of Sequence
Missed Action

performance of that task. This means determining if each of
the nine CPCs (quality of the organization, work conditions,
human-machine support, procedures, simultaneous goals, time
availability, time of day, work experience, and team collabora-
tion) improves, reduces, or does not impact human performance.
By synthesizing these ratings (counting the number that improve
and reduce performance, and adjusting for dependencies), an
analyst determines if the person is operating at one of the four
Contextual Control Model (COCOM) modes (strategic, tactical,
opportunistic, and scrambled; listed in decreasing levels of hu-
man reliability). In the basic version of CREAM, these control
modes map to a range of probabilities of error occurring.

Point estimates can be achieved with two versions of ex-
tended CREAM. In these, an analyst identifies each task’s cog-
nitive function: observation – observing information in the envi-
ronment; interpretation – understanding observed information;
planning – setting a course of action; and execution – performing
the planned actions. Next, the analyst identifies the function’s
most likely cognitive function failure (Table 3). Each failure
has an associated nominal probability, originally identified by
analyzing a large database of human performance information
(Hollnagel, 1998a). In the first approach to extended CREAM,
the nominal probability is scaled to account for the impact of
CPCs by multiplying it by a scaling factor associated with the
assessed control mode. In the second variant, the nominal prob-
ability is scaled based on the impact specific CPC levels have
on the different cognitive functions.

CREAM has been used successfully in a number of safety
critical environments. However, it does have some problems.
Bedford et al. (2013) noted large error ranges and inconsistencies
between predictions made with the three versions of CREAM.
To address this, they created an improved version that reconciled
the basic and extended methods (itself a refinement of previous
attempts to improve CREAM predictions; Fujita and Hollnagel
2004; He et al. 2008). First, the method accounts for the impact
of each CPC on overall performance in a single integer, thus
avoiding the collapse of ratings into course control mode des-
ignations. This is computed as the total number of CPCs that

Table 4: Parameter Values Used for Calculating Probabilities of Human
Error in the Revised Version of CREAM (Bedford et al., 2013)

Cognitive Function

Parameter Observation Interpretation Planning Execution

C -2.0775 -1.3495 -2.0000 -2.4120
a 0.0055 0.0041 0.0052 0.0065
b -0.2458 -0.2046 -0.2828 -0.2860
c 0.2840 0.2244 0.4019 0.4079

improve human performance and the number that reduce it:

CPCSum =

(
∑cpc∈CPCs

{
1, if cpc improves
0, otherwise

)

−

(
∑cpc∈CPCs

{
1, if cpc reduces
0, otherwise

)
.

(3)

Second, using the same data that was the basis for CREAM’s
predictions (Hollnagel, 1998a), Bedford et al. (2013) fitted a
regression model for predicting the probability of human error

PHumanError = 10(C+a·CPC2
Sum+b·CPCSum+c) (4)

where C is the log10 of the nominal probability of error for the
cognitive function and a, b, and c are the regression coefficients
for that function. See Table 4 for the computed values. Thus,
by computing the CPCSum with (3) and using the result in (4)
with the parameters from Table 4, accurate predictions of human
error probabilities for a given task can be computed.

While CREAM (and its variants) provides a foundation for
predicting error probabilities, it is a very manual process that
provides no mechanism for analyzing whether task errors will
actually be allowed to occur and whether they will impact sys-
tem safety and performance. Combining CREAM with formal
methods or simulation allows these issues to be addressed in
what are conventionally called third generation approaches.

2.4. Third Generation HRA

Third generation HRAs implement first- and second-
generation methods in simulation or formal analyses to ac-
count for dynamic system behavior in predictions. For exam-
ple, SHERPA (a simulator for human error probability analysis;
Di Pasquale et al. 2015), like most third generation HRAs (Di
Pasquale et al., 2013), is based in first generation methods and
uses simulation. By being first-generation-based, methods like
SHERPA are limited by not including a cognitive model. Their
simulation basis also means that it can miss critical interactions
that would be considered with formal methods. To address these
problems, the Systems Analysis for Formal Pharmaceutical Hu-
man Reliability (SAFPH�) (Zheng et al., 2020a,b, 2017) showed
that basic (Zheng et al., 2020b, 2017) and extended (Zheng et al.,
2020a) CREAM could be implemented in the PRISM proba-
bilistic model checker (Kwiatkowska et al., 2011). When this
includes a dynamic model of the system, SAFPH� was able
to accurately predict the probability of undesirable outcomes
in community pharmacies. These developments are powerful

5

and made several specific recommendations that could improve
community pharmacy (Zheng et al., 2020a). However, they are
limited in two important ways. First, SAFPH� uses a very sim-
ple version of task analysis that is based on flow diagrams and
thus does not allow for the specificity of behavior supported by
EOFM. Second, SAFPH� requires analysts to manually identify
the cognitive function failure for each task and thus does not
dynamically determine how errors could occur.

3. Objectives

In this work, we hypothesized that the expressive power of
the task-based taxonomy of human error (Bolton, 2017b) would
give us enough information to associate every one of the possible
errors with a cognitive function from CREAM (Table 3). This
would enable us to automatically generate erroneous human
behavior as part of a formal model (as was done in Bolton
et al. 2019) but with an associated probability of error for each
possible task deviation. In accomplishing this, we would be able
to use probabilistic and/or statistical model checking to compute
the probability of system safety and performance specifications
being violated and for understanding the likelihood of different
errors contributing to failures. In what follows, we describe
how a method based on these capabilities was realized. This
is followed by a demonstration / validation of our approach
by applying it to a simple but realistic example, an ATM. In
doing this, we were able to obtain preliminary results of the
methods scalability and compare probabilistic and statistical
model checking approaches. After this, we discuss the import of
our findings and how they could influence future research.

4. Method

Our method for stochastically modeling erroneous human
behavior in formal verifications is shown in Fig. 3. In this,
an analyst has access to system information, a completed task
analysis, and HRA (CPCSums for each task). The analyst uses
this to create a task model using PEOFM (which incorporates
HRA information). He or she also creates part of a formal
system model that describes the behavior of the system the
human interacts with and specification properties that he or she
wishes to check. Next, the analyst uses a systematic translation
process that employs theory from CREAM and the task-based
taxonomy of human error to incorporate the task model into
the formal system model. This accounts for erroneous human
behaviors and their probabilities. Then, the analysts run either
probabilistic or statistical model checking (using PRISM) to
verify specification properties against the formal model. This
produces a verification report that, depending on the property
checked and checking method, will produce a probability, CI
around a probability, confirmation, or counterexample.

The three major contributions of this method relate to the
extensions to EOFM required for this method, the novel transla-
tion process, and the specification properties that can be checked.
We describe each of these below.

4.1. EOFM Extensions

To support the new method, changes were made to the
EOFM language (Bolton et al., 2011), now Probabilistic EOFM
(PEOFM). First, PEOFM only supports eight of the EOFM
decompositions (those from Table 1). The sync (where decom-
posed actions are all performed synchronously) and com (for
communicating information between humans) operators were
removed because it was not clear how they would work with the
probabilistic features. This issue is further explored in Section 6.
Second, an optional cpcsum attribute was added to the base
element (eofm) of each task (Fig. 4(a)). This was designed to
set the CPCsum from (3). Third, because nondeterminism in the
initial value in PRISM models can limit analyses, an initial value
was added to SetValue actions (Fig. 4(b)).

4.2. Translation

The translator, like EOFM’s non-probabilistic translators
(Bolton et al., 2019, 2011), interprets EOFM tasks as state ma-
chines using EOFM’s normative (Fig. 1) and erroneous seman-
tics Fig. 2 and Table 2. Older versions translated into the lan-
guage of SAL (Bolton et al., 2019, 2011) and human errors were
non-probabilistic and limited by an analyst-specified maximum.
The new translator converts task models into the language of
PRISM2 and accounts for human error probabilities.

The key to including probabilities in translation is a map-
ping (Table 5) between CREAM’s cognitive functions (Table 5)
and the deviations from normative EOFM semantics from the
task-based taxonomy of human error Fig. 2 and Table 2. Be-
cause local variable assignments are the mechanism EOFM uses
for representing humans noticing and remembering things from
the environment, errors associated with this represent obser-
vation errors. CREAM suggests that interpretation relates to
how humans contextualize observed information. This maps
to activity-level errors caused by the incorrect interpretation
of strategic knowledge (activity Preconditions, RepeatCondi-
tions, and CompletionConditions; Fig. 2(a)). Planning errors in
CREAM occur because people improperly form or understand a
plan or task. Thus, map to any violation of the logic that people
need to understand to properly execute the task: any activity-
level transition error (Fig. 2(a)) that can be caused by violations
of inherent or strategic knowledge conditions. According to
CREAM, execution errors occur when the person is attempting
to physically execute task actions. In our mapping, execution
errors all occur at the action level, either through the transition
of action execution states (Fig. 2(b)) or in the assignment of an
output value (the first two rows of Table 2).

Translation was implemented as a Java desktop application
that converts a PEOFM into PRISM’s language as a Markov
decision process using the architecture shown in Fig. 5. First,
the formal EOFM representation is contained in a single module.
This captures the behavior (normative and erroneous) associated
with each task. This task module interacts with a module (or
modules) that represent other parts of the system (Sys in Fig. 5).

2https://www.prismmodelchecker.org/manual/

6

Probabilistic Temporal
Logic Specification

Properties

Probabilistic / Statistical
Model Checking

(PRISM)

Stochastic Model of
Human-Automation

Interaction

Task Model
(EOFM)

Task-to-Formal-Model
Translation

CREAM HRA and
Task-based
Taxonomy of
Human Error

Task Analysis, HRA,
 and System

Documentation

Manual
Modeling

1 2

3
Verification Report:

Probability, Confidence
Interval, Confirmation,

and/ or Counterexample

Figure 3: Flow diagram of our formal method for including probabilistic erroneous behavior in formal verification. Numbers in processes show order of operation.

humanaction...
name ID@@

toggle

autoreset

behavior@@

behavior@@ setvalue

basictype@@

userdefinedtype@@

initialvalue

IDREF

String

...

eofm 0..1 cpcsum Pattern = -[1-9]|[0-7]@...

(b)

(a) integer@@

String

Figure 4: A visualization (SyncRO Soft SRL, 2021) of additions made to EOFM
to create PEOFM. (a) A cpcsum attribute for each task. (b) An initial value for
SetValue actions. A ... indicates when the remainder of the language is the same
as reported in (Bolton et al., 2011).

Table 5: Mapping of CREAM Cognitive Functions to Errors from EOFM’s
Task-based Taxonomy

Cognitive
Function Task-based Human Errors

Observation Any action-level error related to local variable assignment,
including target and value misremembrances

Interpretation Any activity-level error (intrusion, omission, restart, or de-
lay) caused by a violation of strategic knowledge conditions

Planning Any activity-level error (intrusion, omission, restart, or
delay)

Execution Any action-level error that is not a local variable assignment

This can include automation behavior, the environment, or, hu-
man mission parameters as in traditional EOFM verifications
(Bolton and Bass, 2010a). The interface between the human
and ther parts of the system is represented by shared variables
between modules. Outputs from the human task are actions and
outputs from the other elements represent display information,
environmental conditions, or mission perogatives. To account
for the probabilities for performing tasks normatively or erro-
neously, the EOFM module also takes inputs from modules
representing each CREAM cognitive function (Table 3). There
are four such modules for each EOFM task. The probabilistic
behavior of the model is implemented in these cognitive function
modules. Specifically, each such module produces an output

EOFM:
Formal PEOFM

Observation
Function

Interpretation
Function

Planning
Function

Execution
Function

Task

Sys:
Other System

Elements

..
.

..
.

Observation

Interpretation

Planning

Execution

Human Actions

..
.

Display and
Environmental

Information

..
.

Figure 5: Architecture used for representing a PEOFM in PRISM. Modules are
rounded rectangles. Arrows are variables shared between modules with input
(destination) and output (source) relationships.

that is sent to its associated task that indicates if that function
occurs with an error. Thus, at each model step, the EOFM’s task
model will select from the set of available behaviors based on
the execution state of the task and its cognitive functions.

A task’s cognitive functions compute the probability of an
error (using (4) with the appropriate parameters from Table 4) as

PError

=

{
min

(
10(C+a·CPC2

Sum+b·CPCSum+c),1
)

if CPCSum≥−9

10C otherwise.

(5)

This differs slightly from (4). Because (4) does not account
for situations where the equation produces probabilities greater
than one, the first case of (5) selects the minimum of (4) and 1.
Additionally, PEOFM markup allows CPCSum to go undefined
(see Section 4.1). In this situation, the translator assumes a
default of CPCSum that is less than -9. When this occurs, the
second case of (5) assumes the cognitive function’s nominal
error probability (Bedford et al., 2013; Hollnagel, 1998a).

Cognitive function outputs all behave as shown in Fig. 6. All
start in an Initial state. For any given state, the output will indi-
cate Error with probability PError and NoError with probability
1−PError in the next state. The Initial value allows cognitive
functions to transition to Error or NoError with the appropriate
probabilities before EOFM module transitions (which all require
Error or NoError values) can occur.

7

While considering the output of the cognitive function mod-
ules, the translator interprets the semantics from Figs. 1 and 2. It
does this by creating a variable in the EOFM module represent-
ing the execution state of each act and explicitly representing
the transitions in Fig. 7(a) and (c) for activities and Fig. 7(b),
(d), and (e) for actions. These implement the original semantics
except they only allow transitions to occur if the behavior is en-
abled by the task’s cognitive function outputs. So, for example,
the transitions in Fig. 7(a) and (b) represent normative behavior
(from Fig. 1) and can thus only occur when there are no errors in
the associated cognitive functions. In the transitions, there is an
additional new condition on Reset that allows it to occur when
the act’s parent is ready (Parent = Ready). This gives an act the
option to reset after its intrusion has completed. Consistent with
previous non-probabilistic translators, actions with local variable
assignments automatically transition from Ready to Done, with
the variable assignment occurring in the process. This is done
because modules external to EOFM cannot observe this action
and this form of the transition improves model scalability.

Figure 7(c)–(e) represent the erroneous behaviors from Fig. 2.
Additional conditions are added to account for the mappings for
observation, interpretation, planning, and execution errors from
Table 5. Note that (d) and (e) describe the difference ways that
errors manifest for human actions (which rely on the execution
cognitive function) or local variable assignments (which depend
on observation) respectively. In both of these, the Executing-
to-Done transition is eliminated. This is because an action’s
EndCondition is true by default when the action is performed and
action performance time is not currently modeled (actions are
treated as being instantaneous). This means that an Executing-
to-Done omission is functionally equivalent to a Ready-to-Done
omission. Also note that in (e), Ready-to-Executing and Done-to-
Executing intrusions skip the Executing state for the same reason
that normative local variable assignments do. Finally, CREAM
allows for incorrect actions to be performed (for the execution
function) or the wrong object observed (for the observation
one) (Table 3) as a single error for the respective function. The
original erroneous transitions (Fig. 2) can support this behavior,
but require both an intrusion and omissions. Thus, to represent
wrong action and wrong object observed error types as a single
error in our method, both (d) and (e) contain an extra transition
(Ready-to-Executing in (d) and Ready-to-Done with implied
execution in (e)) to allow an incorrect action or incorrect local
variable assignment (respectively) to be performed when the
given action should execute normatively.

Error NoErrorInitial

PError

PError

PError

1 - PError

1 - PError

1 - PError

Figure 6: Transition logic for the value/state of the output variable of cogni-
tive function modules (see Fig. 5) at each model step. These transitions are
probabilistic, where PError is calculated using (5).

As in previous translators (Bolton et al., 2019, 2011), the
new one creates a variable representing the output or product of
each human action. For Autoreset and Toggle actions, these are
Boolean. For SetValue actions and local variable assignments,
the variables have the type specified in the PEOFM markup.
When the normative action transitions from Ready to Executing
(or from Ready to Executing with presumed execution for local
variable assignments; Fig. 7(b)), the corresponding output or
local variable is set to its appropriate value: true for AutoReset,
the negation of its current value for Toggle, and the markup-
specified value for SetValue and local variable assignments.

Erroneous action intrusions also exhibit this behavior, but
vary in terms of what variable is assigned or what value is as-
signed to it. For all actions, the intrusions that transition from
Ready with a negated start condition have the same target vari-
able and value that would be assigned normatively. This is
also true of intrusions that originate from the Done state. Both
transitions represent a situation where an action is inserted (ex-
traneously) into the executing task. Action intrusions originating
from Ready with a normative (non-negated) StartCondition rep-
resent intrusions where the normative action is replaced with
something else. Since this “something else” could be many dif-
ferent actions, the translator creates multiple transitions of this
type. For a given human action, this means that the translator
creates transitions where the human sets the output of every other
possible human action instead of the one for the current action
(one transition per other action). Similarly, for local variables,
this means that the translator creates transitions where all of
the other local variable assignments from the markup occur in-
stead of the correct one. Additionally, these types of transitions
are used for representing Action Value Substitutions and ac-
tion target substitutions (for SetValue human actions) and value
misremembrances and target misremembrances (for local vari-
able assignments)(Table 2). For both action value substitutions
and misremembrances, the translator creates multiple transitions
where the value assigned to the correct variable is wrong in each
possible way that it could be wrong, one transition for every
possible wrong value. For action target substitutions and target
misremembrances, the translator creates transitions where the
incorrect variable is assigned the correct value for every possible
human action output or local variable (respectively) that has the
same type as the correct variable.

Analysts manually complete the sys module (Fig. 5. How-
ever, the translator creates a template for this that defines the
output variables and provides a pattern for module transitions.

4.3. Specification Properties

Finally, analysts must create specifications to verify against
models. Currently, these must also be manually created by the
analyst. While many properties are possible, current efforts use
probabilistic temporal logic specifications of the form:

P=?[F(FailureCondition)]. (6)

When this specification is checked, it instructs the model checker
to compute the probability (P=?) that eventually (F) a failure
condition (FailureCondition) occurs.

8

State

Transition
Initial State

Legend

Intrusion

Omission

Restart

Delay

Planning = Error

with Reset

Ready

Done Executing

(Planning = Error) ˄ (¬ StartCondition ˅ ¬ Precondition ˅ CompletionCondition)

∨ (Interpretation = Error) ˄ (¬ Precondition ˅ CompletionCondition)

(Planning = Error ∨ Interpretation = Error)

˄ StartCondition ˄ ¬ CompletionCondition

(Planning = Error) ˄

¬ EndCondition ˅ ¬ CompletionCondition

∨ (Interpretation = Error) ˄ ¬ CompletionCondition

(Planning = Error) ˄ (¬ EndCondition ˅ ¬ RepeatCondition ˅ CompletionCondition)

∨ (Interpretation = Error) ˄ (¬ RepeatCondition ˅ CompletionCondition) with Reset

(c)

(Planning = Error ∨ Interpretation = Error)

˄ StartCondition ˄ Precondition

˄ ¬ CompletionCondition

(Planning = Error ∨ Interpretation = Error) ˄ EndCondition

˄ (CompletionCondition ˅ RepeatCondition ˄ ¬ CompletionCondition)

(a)

Planning = NoError ˄ Interpretation = NoError

˄ Reset ∨ (Parent = Ready with Reset)

Planning = NoError ˄ Interpretation = NoError

˄ StartCondition ˄ Precondition ˄ ¬ CompletionCondition

Planning = NoError

˄ Interpretation = NoError

˄ StartCondition

˄ CompletionCondition

Planning = NoError

˄ Interpretation = NoError

˄ EndCondition ˄ CompletionCondition

Planning = NoError ˄ Interpretation = NoError

˄ EndCondition ˄ RepeatCondition ˄¬ CompletionCondition with Reset

Executing

Ready

Done

(Observation = Error)

˄ ¬ StartCondition

Ready

ExecutingDone

(Observation = Error)

(e)
(Observation = Error)

˄ StartCondition

(Observation = Error)

˄ StartCondition

(Observation = Error)˄ StartCondition

with wrong local variable or value

(Execution = Error)

˄ ¬ StartCondition

Ready

Executing

(Execution = Error) ˄ EndCondition

Done
(Execution = Error)

(d)
(Execution = Error)

˄ StartCondition

(Execution = Error)

˄ StartCondition

(Execution = Error)

˄ StartCondition

with wrong action

output

(b)

Planning = NoError ˄ Interpretation = NoError

˄ Reset ∨ Parent = Ready

Execution = NoError

˄ StartCondition

Execution = NoError ˄ EndCondition

Executing

Ready

Done
for local variables

for human actions

Figure 7: Transition diagram showing how the PEOFM to PRISM translator interprets the transition semantics from Figs. 1 and 2. Color is used in transition logic to
highlight new conditions. Note that here Observation, Interpretation, Planning, and Execution represent the output variables from the associated task’s cognitive
function modules (Figs. 5 and 6). (a) How the translator interprets normative transitions for activities from Fig. 1(a). (b) How the translator interprets normative
transitions for actions from Fig. 1(b). (c) How it interprets erroneous transitions for activities from Fig. 2(a). (d) How it interprets erroneous transitions for actions that
execute human actions from Fig. 2(b). (e) How it interprets erroneous transitions for actions that execute a local variable assignment.

9

5. Application

As a proof of concept, we used the method to evaluate an
ATM. This application was chosen because ATMs have well-
documented design variations that can impact user errors. Specif-
ically, some ATM designs can cause a post-completion error
(where a human omits actions related to subsidiary goals once
the primary goal is achieved (Byrne and Bovair, 1997)): a user
leaving the card in the machine after receiving cash. There
are also known probabilities for post-completion errors (Rat-
wani and Gregory Trafton, 2010; Ratwani and Trafton, 2011),
enabling us to determine if our approach produces valid predic-
tions. In what follows, we describe the behavior of two ATM
variants and how they were formally modeled. We also describe
the task behavior the human operator uses when interacting with
the ATM. We then describe how these models were integrated
into complete formal models and used to evaluate the probability
errors caused problems with the system.

5.1. The Formal Model of the ATM

Figure 8 shows the formal models describing the behavior
of the two variations of the ATM. In the first (Fig. 8(a)), the
machine starts on a welcome screen. If the user enters a card,
he or she is brought to the state for entering the pin. In this
state, the user must enter his or her correct pin to progress, with
incorrect pins keeping them in the current state. If the correct
pin is entered, the user reaches the withdraw state. Here, the
user must enter a monetary value that is greater than zero, then
the machine outputs the cash, the user takes it, the machine then
outputs the card. When the user takes the card, the machine
returns to the welcome screen. When in the pin or withdraw
states, the user can press a cancel button to immediately output
the card, which can be retrieved by the user to return the machine
to the welcome screen. The second machine (Fig. 8(b)) works
the same as the first except that the order in which the cash and
card are output is reversed. Note that the machine shown in (a) is
the one that encourages post-completion error because it allows
the human to take the cash (the human’s primary goal) before
taking the card (a subsidiary goal).

5.2. The Task Model for Interacting with the ATM

Figure 9 visualizes the PEOFM representing the human task
behavior for withdrawing cash from both machines in Fig. 8.3

In this, a human who wants to withdraw cash (aGetCash) must
execute four sub-activities in order (as dictated by the ord de-
composition). The user first inserts his or her card (with the
EnterCard AutoReset action via the aInsertCard activity) at the
welcome screen and will continue trying to do so until this
screen has cleared (as dictated by the activity’s strategic knowl-
edge). Similarly, the user will enter his or her correct pin (via
the EnterPin SetValue action) while on the EnterPin interface
state under the aEnterPin activity. Next, the user enters the
desired cash value while in the Withdraw interface state. Finally,

3Task model XML as well as all model code used for this paper can be found
at http://fhsl.eng.buffalo.edu/resources/ProbabilisticEOFM/.

the user will retrieve machine outputs (aRetrieveOutputs) by
performing two activities in any possible order (an and par de-
composition) based on when the system enables them: taking
the cash and taking the card. The user knows that the activity
(aRetrieveOutputs) is completed (via a completion condition) if
the user thinks that the cash has been retrieved.

For this analysis, we assume a CPCSum = 4 for the task. This
was done because it represents the minimum value that would
normally be associated with the strategic control mode, implying
that the human has a deep understanding of the task he or she is
performing and can behave strategically. Given that most people
are very familiar with ATMs and the way they work, this seemed
like a reasonable assumption.

5.3. Translation and Formal System Model Construction

The XML of the PEOFM from Fig. 9 (which was 76 lines
long) was converted into the input language of the PRISM model
checker, producing a representation that is 834 lines. This Sys
module was then completed in this translated version in two
ways: one using the behavior from Fig. 8(a) and one using the
behavior from Fig. 8(b). Thus we ultimately had two formal
system models for comparison: one where we would expect
a higher probability for having a credit card left in it (the one
based on Fig. 8(a)) and one where we would expect this to be
lower (the one based on Fig. 8(b)).

5.4. Specification Properties

We evaluate our model with three specifications, all imple-
mented using the pattern from Eq. (6). The first checked for
the presence of the post-completion error outcome: the person
completing the task having received cash but leaving the card:

Card Left :

P =?

F
 (aGetCash = actDone)

∧
(

iCardPresent
∧iCashOut = NoValue

) . (7)

This tells the model checker to calculate the probability (P =?)
that eventually (F) the task completes (aGetCash = actDone)
with the cash having been retrieved (no longer being output by
the machine; iCashOut = NoValue) and the card remaining as
an output of the machine (iCardPresent).

The second checked for the person completing the task while
leaving cash in the machine:

Cash Left :

P =?

F
 (aGetCash = actDone)

∧
(
¬iCardPresent
∧iCashOut > NoValue

) . (8)

Finally, overall reliability was assessed with a property re-
questing the probability of either (or both) errors occurring:

Reliability :

P =?

F
 (aGetCash = actDone)

∧
(

iCardPresent
∨iCashOut > NoValue

) . (9)

10

EnterCashVal: Value
˄ Value = NoValue

Welcome

OutputCashOutputCard
Take

Cash

TakeCard

Enter

Card

Enter

PIN

Withdraw

EnterPIN: IncorrectPIN

Cancel

Welcome

Enter Your Card

Enter your PIN

⋆⋆|

Enter Withdraw

$ 20|

Please Take

Your Cash

Please Take

Your Card

$
$
$

$
$
$

$
$
$

$
$
$

$
$
$

EnterPIN: CorrectPIN

Value

EnterCashVal: Value
˄ Value > 0

EnterCashVal: Value
˄ Value = NoValue

Welcome

OutputCard

PreCash
OutputCash

EnterPIN: CorrectPIN

Take

Card

TakeCash

Enter

Card

Enter

PIN

Withdraw

EnterPIN: IncorrectPIN

CancelOutputCard

TakeCard

Welcome

Enter Your Card

Enter your PIN

⋆⋆|

Enter Withdraw

$ 20|

Please Take

Your Cash

Please Take

Your Card

Please Take

Your Card

$
$
$

$
$
$

$
$
$

$
$
$

$
$
$

$
$
$

Value

EnterCashVal: Value
˄ Value > 0

(a) (b)

Cancel

Cancel

Figure 8: State machine representation of the two variations of the ATM formal model. (a) An ATM that outputs cash before outputting the user’s card. (b) An ATM
that outputs the user’s card before outputting cash. For both figures, each state encompasses the state of the interface (iInterface; which assumes the value shown in
each circle), whether or not a card is being output (iCardPresent; a Boolean variable that is false except in the OutputCard state), and the state of cash output
(iCashout; which defaults to NoValue $

$
$ but will assume the value entered by the user $

$
$

Value in the OutputCash state).

aGetCash

ord

aInsertCard

ord

EnterCard

aEnterPin

ord

EnterPIN

CorrectPIN

aEnter
CashValue

ord

EnterCashVal

lDesiredValue

aRetreive
Outputs

and_par

ord

TakeCash

aRetreive
Card

ord

TakeCard

iInterfaceState != Welcome TakeCash = actDone

iInterfaceState = Welcome

iInterfaceState = Welcome

iInterfaceState != EnterPIN

iInterfaceState = EnterPIN

iInterfaceState = EnterPIN

iInterfaceState = Withdraw

iInterfaceState = Withdraw

iInterfaceState != Withdraw

aAquireCash

iCashOut != NoValue
iCashOut != NoValue

iCardPresent
iCardPresent

Figure 9: Visualization of the PEOFM a human uses to interact with the ATMs from Fig. 8.
This uses EOFM’s visual notation (Bolton and Bass, 2010c). Activities are rounded rectangles
and actions are pointed rectangles. Activity decompositions are presented as rounded rectangles
below an activity that are connected by an arrow labeled with a decomposition operator. SetValue
actions are presented with both the actions name at the top and the value being committed below it
bolded. Strategic knowledge conditions are labels on lines and arrows connected to their associated
activities. Preconditions are down-pointing yellow arrows connected by on the left of the activity.
Completion conditions are up-pointing magenta triangles connected on the right. Repeat conditions
are recursive arrows on the top of the activity.

11

0.05

0.06

0.07

0.08

0.09

0.10

P
ro

ba
bi

lit
y

of
 F

ai
lu

re (a)

(b)

0

10

20

30

40

0 5000 10000 15000 20000 25000

V
er

ifi
ca

tio
n

T
im

e
(s

)

Number of Samples

Figure 10: (a) Verification results (predicted probability and its 99% CI) and (b)
times from statistical model checking for verify (9) against models containing
behavior from Fig. 8(a) for different numbers of samples.

If the method accurately predicts probabilities, we would
expect the model containing the ATM from Fig. 8(a) to have a
higher probability for leaving the card (7) than leaving cash (8)
because of the machine’s encouragement of the post-completion
error. We would expect the probability of leaving the card to
be lower for the model using Fig. 8(b) because this should not
encourage the post-completion error. We would also expect the
probability of leaving the card to be similar to that of leaving the
cash. Finally, we would expect the overall chance of error (9)
to be higher for the model using Fig. 8(a) because of its support
for the post-completion error.

5.5. Verification and Results

Verifications were performed on a workstation with a 12-
core 3.60 GHz Intel Xeon E5-1650 with 128 Gigabytes of RAM.
However, probabilistic model checking resulted in the machine
running out of memory after more than 24 hours of analysis.
Luckily, we were able to use statistical model checking.

Statistical checking uses samples of model traces to com-
pute CIs on computed probabilities. This means that scalability
restrictions can be avoided at the expense of accuracy. To assess
this tradeoff, we conducted a small experiment using the formal
system model containing the machine behavior from Fig. 8(a)
and checking the overall reliability with (9). This assumed a 99%
CI computed from a sample size starting at 1,000 and increasing
in 1,000 increments up to 25,000. Experiment results are shown
in Fig. 10. This showed the verification time increased linearly
with the number of samples Fig. 10(b). It also showed that the
width of the 99% CI narrowed as the sample size increased. At
25,000 samples, the verification took 37.146 seconds to estimate
a probability of 0.07332 with a 99% CI of [0.069, 0.0776]. This
interval is less than 0.01, or one percentage point. Thus, statisti-
cal model checking was able to produce results that we can be
99% confident are within 1 percentage point of the actual value
in less than a minute of verification time. We used a sample size
of 25,000 for subsequent verifications.

Figure 11 shows the results of checking each of the proper-
ties against the two model variants. This produced results that
are consistent with our expectations. The model with the behav-
ior from Fig. 11(a) showed a probability of 0.04544 of leaving
the card in the machine, a value significantly higher (shown by
the CIs) than it was for the machine from Fig. 11(b). The second
value was also comparable to the values seen for both models
for leaving cash in the machine. Finally, the machine supporting
the post-completion error was significantly more likely to see
any error (0.07332) than the other machine (0.06448).

6. Discussion

In this research, we introduced a new formal method that
combines task modeling, a taxonomy of erroneous human behav-
ior, and HRA. This is able to both formally generate HAI errors
and account for the probabilities of these errors. This enables
engineers to evaluate reactive HAI designs by using probabilistic
and statistical model checking to determine the relative proba-
bility of different outcomes both between and within designs.
This is a major contribution for formal analyses of human error
and reliability, as previous approaches could only determine if
errors were possible. As such, this paper also makes signifi-
cant contributions to reliability engineering and system safety.
Specifically, human behavior and human error play significant
roles in failure of safety and reliability. The method introduced
here gives engineers an unprecedented ability to assess the relia-
bility of safety-critical, human-interactive systems. Thus, this
work will enable designs and interventions that will significantly
reduce the probability of human error causing system failures
and disasters, saving lives, and protecting critical infrastructure.

The ATM application is illustrative because it shows that
probability predictions were able to differentiate between two
designs in ways that match with established performance: the
post-completion error condition was significantly more likely
with the interface that facilitated it than for the other interface
and other errors. It is not entirely clear from the literature how
likely an ATM post-completion error is. However, Ratwani and
Gregory Trafton (2010); Ratwani and Trafton (2011) in studies

0.04205

0.03254

0.06907

0.04544

0.03556

0.07332

0.04883

0.03858

0.07757

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.03554

0.02841

0.06048

0.03868

0.03124

0.06448

0.04182

0.03407

0.06848

Model facilitating postcompletion error

Model correcting postcompletion error

Card Left (7) Cash Left (8) Reliability (9)

Specification Property

P
ro

ba
bi

lit
y

of
 F

ai
lu

re

Figure 11: Verification results (prediction and 99% CI) for checking the specifi-
cations in (7)–(9) against the two variations of the model: one with the behavior
for enabling a post-completion error (Fig. 8(a); black) and one with the behavior
for avoiding it (Fig. 8(a); blue).

12

on post-completion errors found that when they are facilitated
by the HAI, they occur about 5% of the time. This 5% av-
erage is consistent with the 4.544% observed with our model.
Thus, while limited, the ATM application does suggest that our
approach is capable of producing valid predictions.

It is important to note that the ATM example produces
more than just post-completion errors. This is evidenced by
the fact that the overall error rates were higher than the post-
completion ones and that the model that did not allow for the
post-completion error still exhibited errors. Of course, other
systems will have different types of errors that will be critical to
system safety and performance. Future research should seek to
validate our method with other applications and human subject
experiments. Additionally, there are extensions and considera-
tions necessitated by our approach. We discuss these below.

6.1. Probability Accuracy

While the presented results are consistent with the literature,
the predictions seem high. This is not necessarily surprising
because the method accounts for all of the possible ways an
error can manifest, including all planning errors (incorrect task
knowledge). For a task as familiar as interacting with an ATM,
it is conceivable that planning errors might be less likely than
for other tasks. It is worth noting that the method can be easily
adapted to account for different conditions. First, researchers
can assess the values of the CPCs used in a given environment
and use those in analyses. Additionally, in situations where an
analyst is sure a given cognitive function is not a factor, he or she
can easily set the default probability of error in the associated
function to 0 to mitigate the function’s effect.

Additionally, the method enables analysts to evaluate the
impact of different conditions on performance by manipulating
the CPC values. For example, CREAM has a CPC representing
the quality of conditions. Because any given CPC can assume a
value of -1, 0, or 1, it can have up to a 2 point impact on CPCsum.
Any analyst wishing to see how environmental or design factors
impact computed probabilities should be able to appropriately
adjust CPC values and rerun analyses. This should be explored
more thoroughly in subsequent research.

To some extent, the absolute accuracy of the probabilistic
predictions is not critical. As long as the method is capable
of determining which condition is more likely, analysts will be
able to take appropriate action. Future research will investigate
how well the method works for predicting probabilities both
absolutely and relatively.

6.2. Deeper Support for CPC Variation

The current version of the method has a single CPCSum and
associated cognitive functions for each task. It is conceivable
that CPC values could vary for different parts of a task. It
should be possible for PEOFM to be updated to allow for greater
specificity of CPCSum values at the activity level and have the
translator create separate cognitive functions to accommodate
this. Future research should explore these developments.

6.3. Scalability

The ATM example showed that scalability is a major restric-
tion of probabilistic model checking with PEOFM. The current
translation approach is derived from the original method that
was used for including EOFM task behavior in nonprobabilistic
model checking analyses (Bolton et al., 2011). In this, the exe-
cution state of every activity and action is represented with its
own variable. In traditional model checking with EOFM, signif-
icant scalability improvement can be achieved by eliminating
the explicit representation of EOFM activity execution state and
expressing it as a formula over the execution state of actions
(Bolton et al., 2016). This improvement works because it elimi-
nates the need for intermediate task model transitions. However,
this approach is currently incompatible with the human error
generation method employed here because erroneous deviations
occur at the intermediate transitions of the task’s activities. It
is, however, theoretically possible to apply the scalability im-
provement method from Bolton et al. (2011) to PEOFM, but
this would ultimately require a much more complex formulation.
This is because there are an increased number of intermediary
transitions necessitated by error generation and the need to ac-
count for the probabilities of these transitions. This should be
explored more thoroughly in future research.

Fortunately, statistical model checking has fewer restrictions
than probabilistic model checking. In fact, verification times
appear to scale linearly with the number of computed samples.
This provides good evidence that our method, when used with
statistical checking, can scale to industrial applications. This
should also be investigated further in future research.

6.4. Purely Reactive System

It is important to note that our method is most appropriate
for modeling reactive systems: where system behavior occurs in
direct response to human actions. This is because the cognitive-
function-based model assumes that stochastic behavior only
originates with the human. There are many interactive systems
that are purely reactive. However, this limits the applicability
of our approach. To help expand the scope of applications that
could be evaluated with the method, future research should
investigate how to account for stochastic behavior originating
from the environment and machine automated behavior.

6.5. Non-deterministic Choice

A byproduct of using Markov decision processes and sta-
tistical model checking in our method is that nondeterministic
transitions (where there are multiple allowable transitions at a
given step) occur with equal probability. For example, if there
are two activities in an and seq decomposition who both have
their precondition satisfied, there will be a 0.5 probability of each
executing. While this is normally the behavior an analyst will
want, there are conceivable situations where humans would be
more likely to choose one behavior over another. Future research
should investigate how to account for this in the method.

13

6.6. The sync Decomposition and Human-human Interaction

PEOFM and the method currently support all but two of
EOFMs features. First, PEOFM does not allow the sync decom-
position, a rare condition where the human performs multiple
actions synchronously. Second, the method does not support
EOFMC capabilities (the variant supporting human-human co-
ordination and communication; Bolton 2015; Bolton and Bass
2017). While CREAM’s CPCs and cognitive functions do give
some insight into how to account for human-human coordination
errors, they do not appear to offer a theory for modeling the prob-
ability of communication errors. Future work should investigate
how to incorporate EOFMC capabilities into our method.

6.7. Dependence of Error Prediction on Task Modeling

Because our method uses the task-based taxonomy of human
error, it is complete with respect to the phenotypes of erroneous
action and slip genotypes (Bolton, 2017b). This means that it
should be capable of modeling nearly any type of human error
and its associated probability. However, it is important to note
that the type of errors that can be generated will depend on the
way that the normative task model is formulated. For exam-
ple, our method should be capable of generating errors where
someone puts a card into the machine with incorrect orientation,
or even inserts the wrong card. However, accomplishing this
would require analysts to include actions in the task model for
picking up different card options and inserting cards in differ-
ent orientations. Doing this ultimately requires modeler insight
that may not be obvious at the time of model creation. Future
work should investigate how to create guidance for modelers
that enables them to include model concepts that will enable
complete error prediction. Additionally, progress has been made
in using formal models of affordance to identify what human
actions (intended or unintended) are facilitated by the interface
and environment (Abbate and Bass, 2017; Kim et al., 2010). Fu-
ture research should investigate whether affordance-based action
prediction can be incorporated into our method.

7. Acknowledgement

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1918314 and 1918140.

References

Abbate, A.J., Bass, E.J., 2017. Modeling affordance using formal methods, in:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
SAGE Publications Sage CA: Los Angeles, CA. pp. 723–727.

Aı̈t-Ameur, Y., Baron, M., 2006. Formal and experimental validation approaches
in HCI systems design based on a shared event B model. International Journal
on Software Tools for Technology Transfer 8, 547–563.

Barbosa, A., Paiva, A.C., Campos, J.C., 2011. Test case generation from
mutated task models, in: Proceedings of the 3rd ACM SIGCHI symposium
on Engineering interactive computing systems, ACM. pp. 175–184.

Basnyat, S., Palanque, P., Schupp, B., Wright, P., 2007. Formal socio-technical
barrier modelling for safety-critical interactive systems design. Safety Science
45, 545–565.

Bastide, R., Basnyat, S., 2007. Error patterns: Systematic investigation of
deviations in task models, in: Task Models and Diagrams for Users Interface
Design, Springer, Berlin. pp. 109–121.

Bedford, T., Bayley, C., Revie, M., 2013. Screening, sensitivity, and uncertainty
for the CREAM method of human reliability analysis. Reliability Engineering
& System Safety 115, 100–110.

Bell, J., Holroyd, J., 2009. Review of human reliability assessment methods.
Technical Report RR679. Health and Safety Executive. Derbyshire.

Blom, H.A.P., Stroeve, S., Daams, J., Nijhuis, H.B., 2001. Human cognition
performance model based evaluation of air traffic safety, in: Proceedings
of the 4th International Workshop on Human Error, Safety and System
Development, Linköping. pp. 11–12.

Bolton, M.L., 2015. Model checking human–human communication protocols
using task models and miscommunication generation. Journal of Aerospace
Information Systems 12, 476–489.

Bolton, M.L., 2017a. Novel developments in formal methods for human factors
engineering, in: Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, SAGE Publications Sage CA: Los Angeles, CA. pp. 715–
717.

Bolton, M.L., 2017b. A task-based taxonomy of erroneous human behavior.
International Journal of Human-Computer Studies 108, 105–121.

Bolton, M.L., Bass, E.J., 2009a. Building a formal model of a human-interactive
system: Insights into the integration of formal methods and human factors
engineering, in: Proceedings of the 1st NASA Formal Methods Symposium,
NASA Ames Research Center, Moffett Field. pp. 6–15.

Bolton, M.L., Bass, E.J., 2009b. A method for the formal verification of human
interactive systems, in: Proceedings of the 53rd Annual Meeting of the
Human Factors and Ergonomics Society, HFES, Santa Monica. pp. 764–768.

Bolton, M.L., Bass, E.J., 2010a. Formally verifying human-automation inter-
action as part of a system model: Limitations and tradeoffs. Innovations in
Systems and Software Engineering: A NASA Journal 6, 219–231.

Bolton, M.L., Bass, E.J., 2010b. Using task analytic models and phenotypes of
erroneous human behavior to discover system failures using model checking,
in: Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, SAGE Publications Sage CA: Los Angeles, CA. pp. 992–996.

Bolton, M.L., Bass, E.J., 2010c. Using task analytic models to visualize model
checker counterexamples, in: Proceedings of the 2010 IEEE International
Conference on Systems, Man, and Cybernetics, IEEE, Piscataway. pp. 2069–
2074.

Bolton, M.L., Bass, E.J., 2011. Evaluating human-automation interaction using
task analytic behavior models, strategic knowledge-based erroneous human
behavior generation, and model checking, in: Proceedings of the IEEE
International Conference on Systems Man and Cybernetics, IEEE, Piscataway.
pp. 1788–1794.

Bolton, M.L., Bass, E.J., 2012. Using model checking to explore checklist-
guided pilot behavior. International Journal of Aviation Psychology 22,
343–366.

Bolton, M.L., Bass, E.J., 2013a. Evaluating human-human communication
protocols with miscommunication generation and model checking, in: Pro-
ceedings of the Fifth NASA Formal Methods Symposium. Moffett Field:
NASA Ames Research Center, NASA Ames Research Center, Moffett Field.
pp. 48–62.

Bolton, M.L., Bass, E.J., 2013b. Generating erroneous human behavior from
strategic knowledge in task models and evaluating its impact on system safety
with model checking. IEEE Transactions on Systems, Man and Cybernetics:
Systems 43, 1314–1327.

Bolton, M.L., Bass, E.J., 2017. Enhanced operator function model (EOFM):
A task analytic modeling formalism for including human behavior in the
verification of complex systems, in: Weyers, B., Bowen, J., Dix, A., Palanque,
P. (Eds.), The Handbook of Formal Methods in Human-Computer Interaction.
Springer, Cham, pp. 343–377.

Bolton, M.L., Bass, E.J., Siminiceanu, R.I., 2012. Generating phenotypical
erroneous human behavior to evaluate human-automation interaction using
model checking. International Journal of Human-Computer Studies 70,
888–906.

Bolton, M.L., Bass, E.J., Siminiceanu, R.I., 2013. Using formal verification to
evaluate human-automation interaction in safety critical systems, a review.
IEEE Transactions on Systems, Man and Cybernetics: Systems 43, 488–503.

Bolton, M.L., Molinaro, K.A., Houser, A.M., 2019. A formal method for
assessing the impact of task-based erroneous human behavior on system
safety. Reliability Engineering & System Safety 188, 168–180.

Bolton, M.L., Siminiceanu, R.I., Bass, E.J., 2011. A systematic approach to
model checking human-automation interaction using task-analytic models.
IEEE Transactions on Systems, Man, and Cybernetics, Part A 41, 961–976.

14

Bolton, M.L., Zheng, X., Molinaro, K., Houser, A., Li, M., 2016. Improving the
scalability of formal human–automation interaction verification analyses that
use task-analytic models. Innovations in Systems and Software Engineering
13, 1–17.

Byrne, M.D., Bovair, S., 1997. A working memory model of a common proce-
dural error. Cognitive Science 21, 31–61.

Castiglia, F., Giardina, M., Caravello, F.P., 2008. Fuzzy fault tree analysis
in modern γ-ray industrial irradiator: Use of fuzzy version of HEART and
CREAM techniques for human error evaluation, in: International Conference
on Probabilistic Safety Assessment and Management.

Chen, D., Fan, Y., Li, W., Wang, Y., Zhang, S., 2019. Human reliability
prediction in deep-sea sampling process of the manned submersible. Safety
science 112, 1–8.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. MIT Press,
Cambridge.

Di Pasquale, V., Iannone, R., Miranda, S., Riemma, S., 2013. An overview
of human reliability analysis techniques in manufacturing operations, in:
Schiraldi, M. (Ed.), Operations management. InTech, pp. 221–240.

Di Pasquale, V., Miranda, S., Iannone, R., Riemma, S., 2015. A simulator
for human error probability analysis (SHERPA). Reliability Engineering &
System Safety 139, 17–32.

Fields, R.E., 2001. Analysis of Erroneous Actions in the Design of Critical
Systems. Ph.D. thesis. University of York. York.

Fujita, Y., Hollnagel, E., 2004. Failures without errors: Quantification of context
in HRA. Reliability Engineering & System Safety 83, 145–151.

Geng, J., Murè, S., Baldissone, G., Camuncoli, G., Demichela, M., 2015. Human
error probability estimation in ATEX-HMI area classification: From THERP
to FUZZY CREAM. Chemical Engineering Transactions 43, 1243–1248.

Gunter, E.L., Yasmeen, A., Gunter, C.A., Nguyen, A., 2009. Specifying and
analyzing workflows for automated identification and data capture, in: Pro-
ceedings of the 42nd Hawaii International Conference on System Sciences,
IEEE Computer Society, Los Alatimos. pp. 1–11.

He, X., Wang, Y., Shen, Z., Huang, X., 2008. A simplified CREAM prospective
quantification process and its application. Reliability Engineering & System
Safety 93, 298–306.

Hollnagel, E., 1993. The phenotype of erroneous actions. International Journal
of Man-Machine Studies 39, 1–32.

Hollnagel, E., 1998a. Cognitive Reliability and Error Analysis Method
(CREAM). Elsevier, Oxford.

Hollnagel, E., 1998b. Context, cognition and control, in: Waern, Y. (Ed.),
Co-operative Process Management, Cognition and Information Technology.
Taylor & Francis, London, pp. 27–52.

Hollnagel, E., Kaarstad, M., Lee, H.C., 1999. Error mode prediction. Er-
gonomics 42, 1457–1471.

Kebabjian, R., 2018. Accident statistics. http://www.planecrashinfo.

com/cause.htm.
Kenny, D.J., 2015. 26th Joseph T. Nall report: General Aviation Accidents in

2014. Technical Report. AOPA Foundation.
Kim, N., Shin, D., Wysk, R., Rothrock, L., 2010. Using finite state automata

(FSA) for formal modelling of affordances in human-machine cooperative
manufacturing systems. International Journal of Production Research 48,
1303–1320.

Kohn, L.T., Corrigan, J., Donaldson, M.S., 2000. To Err is Human: Building a
Safer Health System. National Academy Press, Washington.

Kwiatkowska, M., Norman, G., Parker, D., 2007. Stochastic model checking,
in: Bernardo, M., Hillston, J. (Eds.), Formal Methods for the Design of
Computer, Communication and Software Systems: Performance Evaluation,
Springer, Berlin. pp. 220–270.

Kwiatkowska, M., Norman, G., Parker, D., 2011. PRISM 4.0: Verification of
probabilistic real-time systems, in: International Conference on Computer
Aided Verification, Springer. pp. 585–591.

Le Bot, P., 2004. Human reliability data, human error and accident mod-
els—illustration through the three mile island accident analysis. Reliability
Engineering & System Safety 83, 153–167.

Manning, S.D., Rash, C.E., LeDuc, P.A., Noback, R.K., McKeon, J., 2004. The
role of human causal factors in US Army unmanned aerial vehicle accidents.
Technical Report 2004-11. USA Army Research Laboratory.

NHTSA, 2008. National motor vehicle crash causation survey: Report to
congress. Technical Report DOT HS 811 059. National Highway Traffic
Safety Administration. Springfield.

Palanque, P.A., Bastide, R., Senges, V., 1996. Validating interactive system

design through the verification of formal task and system models, in: Pro-
ceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction, Chapman and Hall, London. pp. 189–212.

Pan, D., Bolton, M.L., 2018. Properties for formally assessing the performance
level of human-human collaborative procedures with miscommunications and
erroneous human behavior. International Journal of Industrial Ergonomics
63, 75–88.

Paternò, F., Santoro, C., 2001. Integrating model checking and HCI tools to
help designers verify user interface properties, in: Proceedings of the 7th
International Workshop on the Design, Specification, and Verification of
Interactive Systems, Springer, Berlin. pp. 135–150.

Rantanen, E., Deeter, J., Burke, S., Wang, Y., 2012. Human factors evalua-
tion of pharmacy operations, in: 2012 Symposium on Human Factors and
Ergonomics in Health Care: Bridging the Gap, HFES, Santa Monica.

Rashed, S.K., 2016. The concept of human reliability assessment tool CREAM
and its suitability for shipboard operations safety. Journal of Shipping and
Ocean Engineering 6, 313–320.

Ratwani, R.M., Gregory Trafton, J., 2010. A generalized model for predicting
postcompletion errors. Topics in cognitive science 2, 154–167.

Ratwani, R.M., Trafton, J.G., 2011. A real-time eye tracking system for predict-
ing and preventing postcompletion errors. Human–Computer Interaction 26,
205–245.

Reason, J., 1990. Human Error. Cambridge University Press, New York.
Reer, B., 2008. Review of advances in human reliability analysis of errors of

commission part 2: EOC quantification. Reliability Engineering & System
Safety 93, 1105–1122.

Schraagen, J.M., Chipman, S.F., Shalin, V.L., 2000. Cognitive Task Analysis.
Lawrence Erlbaum Associates, Inc., Philadelphia.

Stanton, N.A., Ashleigh, M.J., Roberts, A.D., Xu, F., 2001. Testing Hollnagel’s
contextual control model: Assessing team behaviour in a human supervisory
control task. Journal of Cognitive Ergonomics 5, 21–33.

Swain, A., 1987. Accident Sequence Evaluation Program Human Reliabil-
ity Analysis Procedure. Technical Report NUREG/CR-4772. US Nuclear
Regulatory Commission. Washington, DC.

SyncRO Soft SRL, 2021. Relax NG schema diagram. URL:
http://www.oxygenxml.com/doc/ug-oxygen/topics/

relax-ng-schema-diagram.html.
Weyers, B., Bowen, J., Dix, A., Palanque, P. (Eds.), 2017. The Handbook of

Formal Methods in Human-Computer Interaction. Springer, Berlin.
Williams, J.C., 1986. HEART – a proposed method for achieving high reliability

in process operation by means of human factors engineering technology, in:
Proceedings of a Symposium on the Achievement of Reliability in Operating
Plant, Safety and Reliability Society (SaRS), NEC, Birmingham.

Worm, A., 2001. Breaking the barriers: Facilitating efficient command and
control in multi-service emergency management, in: 8th World Conference
on Emergency Management, Oslo. pp. 19–22.

Yang, Z., Bonsall, S., Wall, A., Wang, J., Usman, M., 2013. A modified CREAM
to human reliability quantification in marine engineering. Ocean Engineering
58, 293–303.

Zhang, S., He, W., Chen, D., Chu, J., Fan, H., 2019. A dynmaic human relia-
bility assessment approach for manned submersibles using PMV-CREAM.
International Journal of Naval Architecture and Ocean Engineering .

Zheng, X., Bolton, M.L., Daly, C., 2020a. Extended SAFPH� (Systems Analysis
for Formal Pharmaceutical Human Reliability): Two approaches based on
extended cream and a comparative analysis. Safety Science 132, 18 pages.
doi:10.1016/j.ssci.2020.104944.

Zheng, X., Bolton, M.L., Daly, C., Biltekoff, E., 2020b. The development of
a next-generation human reliability analysis: Systems analysis for formal
pharmaceutical human reliability (SAFPH�). Reliability Engineering &
System Safety 202, 15 pages. doi:10.1016/j.ress.2020.106927.

Zheng, X., Bolton, M.L., Daly, C., Feng, L., 2017. A formal human reliability
analysis of a community pharmacy dispensing procedure, in: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, SAGE, Los
Angeles. pp. 728–732.

15

