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ORIGIN AND UNDERLYING PRINCIPLES 

Engineers use task analytic behavior models to describe the 
normative human behaviors required to control a system 
[12]. These models represent the mental and physical ac-
tivities operators use to achieve the goals that the system 
was designed to support. Enhanced Operator Function 
Model (EOFM) [9], an extension of the Operator Function 
Model [13], represents human behavior as an input-output 
system using an XML notation.  

An instantiated EOFM describes inputs from external 
sources and how a human operator produces actions as part 
of a task. Tasks in EOFMs are hierarchical representations 
of goal-driven activities that decompose into lower level 
activities, and, finally, atomic actions. EOFMs express task 
knowledge by explicitly specifying the conditions under 
which human operator activities can execute (precondi-
tions), when they can repeat (repeat conditions), and what 
must be true when they finish (completion conditions) in 
Boolean expressions. Any activity can decompose into one 
or more activities or actions (sub-acts). A decomposition 
operator specifies the temporal relationships between and 
the cardinality of the decomposed sub-acts (when they can 
execute relative to each other and how many can execute). 
EOFM supports all of the decomposition operators in Table 
1. EOFM also supports a visual notation (see Figure 1 for 
an example). 

EOFM has formal semantics that specify how an instantiat-
ed EOFM model executes [9]. Specifically, each activity or 
action can have one of three execution states: waiting to 
execute (Ready), executing (Executing), and done (Done). 
An activity or action transitions between each of these 
states based on its current state; the state of its immediate 
parent, its siblings (activities or actions contained in the 
same decomposition), and its immediate children in the 
hierarchy; and the decomposition operators that connect the 
activity to its parent and its children. This formal semantics 
allows an instantiated EOFM to be automatically translated 
into a formal model [9] capable of being evaluated by a 
model checker, the Symbolic Analysis Laboratory (SAL) 
[10] in our case. 

 

MODELED RELATIONSHIPS 

EOFMs are typically used to represent normative human 
behavior. However, it is possible to generate potentially 
unanticipated erroneous human behavior in instantiated 
EOFMs and thus include it in formal system models.   

Erroneous behavior can be produced in two different ways. 
In the first [5], each action in an EOFM task is replaced 
with a generative that allows for the performance of 
Hollnagel’s [11] zero-order phenotypes of erroneous action. 
Through multiple performances of zero-order phenotypes, 
more complicated erroneous behaviors are possible. In the 
second erroneous behavior generation technique [7], the 

Operator Description 

optor_seq 
Zero or more of the sub-acts must execute 
in any order one at a time. 

optor_par 
Zero or more of the sub-acts must execute 
in any order and can execute in parallel. 

or_seq 
One or more of the sub-acts must execute 
in any order one at a time. 

or_par 
One or more of the sub-acts must execute 
in any order and can execute in parallel. 

and_seq 
All of the sub-acts must execute in any 
order one at a time. 

and_par 
All of the sub-acts must execute in any 
order and can execute in parallel. 

xor Exactly one sub-act must execute. 

ord 
All sub-acts must execute in the order they 
appear. 

sync All sub-acts must execute synchronously. 

Table 1. EOFM Decomposition Operators 
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Figure 1. The visual representation of a task structure in an instantiation of an EOFM. EOFMs can be represented visually as tree-like 
graphs. Actions are rectangles and activities are rounded rectangles. An activity’s decomposition is presented as an arrow, labeled 
with the decomposition operator, that points to a large rounded rectangle containing the decomposed activities or actions. Conditions 
on activities are represented as shapes or arrows (annotated with the logic) connected to the activity that they constrain. A precondi-
tion is a yellow, downward-pointing triangle; a completion condition is a magenta, upward-pointing triangle; and a repeat condition is 
an arrow recursively pointing to the top of the activity. 

formal semantics of EOFM are extended in order to model 
human operator attention failures (Reason’s [14] slips) that 
enable activities to be erroneously omitted, repeated, or 
committed. In both cases, a maximum is used to control the 
number of erroneous behaviors considered in a given evalu-
ation. Both of these erroneous behavior generation tech-
niques have been implemented as options in the EOFM to 
SAL translator.  

Translated EOFM instances fit into a larger formal model-
ing architectural framework that supports concepts im-
portant to human-automation interaction. This encompasses 
models of human missions (i.e. goals), human task behavior 
(the translated EOFM instance), human-device interfaces 
(displays and controls available to the human operator), 
device automation (underlying device behavior), and the 
operational environment [4]. 

PROBLEMS ADDRESSED 

The formal nature of the framework allows models created 
with it to be evaluated with a model checker. Model check-
ing is an automated formal verification process that ex-
haustively searches a system’s statespace to see if it can 
find a violation of specification properties. If no violation is 
found, the model checker has proven that the model adheres 

to the specification. Otherwise, the model checker produces 
a counterexample that illustrates how a violation occurred. 

Thus, a model checker can be used on formal models that 
contain translated EOFM instances to prove whether or not 
the modeled human behavior, and the resulting human-
automation interaction, will contribute to a violation of sys-
tem safety (encoded in a specification property). This can 
include any generated (and thus potentially unanticipated) 
erroneous human behavior. System safety has been evaluat-
ed with normative human task behavior [9], normative hu-
man performance of checklist procedures [8], generated 
phenotypical erroneous human behavior [5], and generated 
erroneous human behavior caused by failures of attention 
[7]. It is also possible to use the visual notation of the 
EOFM to help analysts diagnose specification violations 
reported in counterexamples [6]. 

APPLICATIONS 

EOFM has been used with model checking to find problems 
in, and explore design interventions for a number of appli-
cations. These include a Patient Controlled Analgesia Pump 
[4, 3, 7], an automobile with a simple cruise control [9], an 
aircraft instrument landing checklist procedure [8], and a 
radiation therapy machine [5]. 



LIMITATIONS AND DEVELOPMENT OPPORTUNITIES 

There are a number of potential development opportunities 
for EOFM and its associated analyses. Firstly, analyses that 
utilize EOFMs, especially those with erroneous human be-
havior generation, do not scale well [2]. Thus current work 
is investigating ways of improving the EOFM to SAL trans-
lation in order to improve scalability. Secondly, the pre-
sented method has almost exclusively been used to evaluate 
single operator systems. However, ongoing research is in-
vestigating how to model human communication and coor-
dination with EOFM [1]. Thirdly, in order to assist analysts 
in evaluating human-automation interaction with EOFM, 
work is currently investigating how specification properties 
indicative of good human-automation interaction can be 
generated automatically from instantiated EOFMs and used 
in formal verification analyses [3]. Finally, EOFM currently 
does not integrate with other infrastructures designed to 
evaluate human-automation interaction formally (see [2]). 
Future work should attempt to rectify this limitation. 
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