
Model Checking Human-automation Interaction with

Enhanced Operator Function Model

Matthew L. Bolton
San José State University

Research Foundation
NASA Ames Research Center

Moffett Field, CA USA
matthew.l.bolton@nasa.gov

Ellen J. Bass
Department of Systems and In-

formation Engineering
University of Virginia

Charlottesville, VA USA
ejb4n@virginia.edu

ORIGIN AND UNDERLYING PRINCIPLES

Engineers use task analytic behavior models to describe the
normative human behaviors required to control a system
[12]. These models represent the mental and physical ac-
tivities operators use to achieve the goals that the system
was designed to support. Enhanced Operator Function
Model (EOFM) [9], an extension of the Operator Function
Model [13], represents human behavior as an input-output
system using an XML notation.

An instantiated EOFM describes inputs from external
sources and how a human operator produces actions as part
of a task. Tasks in EOFMs are hierarchical representations
of goal-driven activities that decompose into lower level
activities, and, finally, atomic actions. EOFMs express task
knowledge by explicitly specifying the conditions under
which human operator activities can execute (precondi-
tions), when they can repeat (repeat conditions), and what
must be true when they finish (completion conditions) in
Boolean expressions. Any activity can decompose into one
or more activities or actions (sub-acts). A decomposition
operator specifies the temporal relationships between and
the cardinality of the decomposed sub-acts (when they can
execute relative to each other and how many can execute).
EOFM supports all of the decomposition operators in Table
1. EOFM also supports a visual notation (see Figure 1 for
an example).

EOFM has formal semantics that specify how an instantiat-
ed EOFM model executes [9]. Specifically, each activity or
action can have one of three execution states: waiting to
execute (Ready), executing (Executing), and done (Done).
An activity or action transitions between each of these
states based on its current state; the state of its immediate
parent, its siblings (activities or actions contained in the
same decomposition), and its immediate children in the
hierarchy; and the decomposition operators that connect the
activity to its parent and its children. This formal semantics
allows an instantiated EOFM to be automatically translated
into a formal model [9] capable of being evaluated by a
model checker, the Symbolic Analysis Laboratory (SAL)
[10] in our case.

MODELED RELATIONSHIPS

EOFMs are typically used to represent normative human
behavior. However, it is possible to generate potentially
unanticipated erroneous human behavior in instantiated
EOFMs and thus include it in formal system models.

Erroneous behavior can be produced in two different ways.
In the first [5], each action in an EOFM task is replaced
with a generative that allows for the performance of
Hollnagel’s [11] zero-order phenotypes of erroneous action.
Through multiple performances of zero-order phenotypes,
more complicated erroneous behaviors are possible. In the
second erroneous behavior generation technique [7], the

Operator Description

optor_seq
Zero or more of the sub-acts must execute
in any order one at a time.

optor_par
Zero or more of the sub-acts must execute
in any order and can execute in parallel.

or_seq
One or more of the sub-acts must execute
in any order one at a time.

or_par
One or more of the sub-acts must execute
in any order and can execute in parallel.

and_seq
All of the sub-acts must execute in any
order one at a time.

and_par
All of the sub-acts must execute in any
order and can execute in parallel.

xor Exactly one sub-act must execute.

ord
All sub-acts must execute in the order they
appear.

sync All sub-acts must execute synchronously.

Table 1. EOFM Decomposition Operators

aActivity1

Variable1 = X AND Variable2 = Y Variable1 /= X AND Variable2 /= Y

or_seq

ord

aActivity2 aActivity3

optor_par

Action1

Variable2 /= Y

aActivity4 aActivity5

Action5Action4

ordxor

Action3Action2

Variable1 = X

Variable2 = Y

Figure 1. The visual representation of a task structure in an instantiation of an EOFM. EOFMs can be represented visually as tree-like
graphs. Actions are rectangles and activities are rounded rectangles. An activity’s decomposition is presented as an arrow, labeled
with the decomposition operator, that points to a large rounded rectangle containing the decomposed activities or actions. Conditions
on activities are represented as shapes or arrows (annotated with the logic) connected to the activity that they constrain. A precondi-
tion is a yellow, downward-pointing triangle; a completion condition is a magenta, upward-pointing triangle; and a repeat condition is
an arrow recursively pointing to the top of the activity.

formal semantics of EOFM are extended in order to model
human operator attention failures (Reason’s [14] slips) that
enable activities to be erroneously omitted, repeated, or
committed. In both cases, a maximum is used to control the
number of erroneous behaviors considered in a given evalu-
ation. Both of these erroneous behavior generation tech-
niques have been implemented as options in the EOFM to
SAL translator.

Translated EOFM instances fit into a larger formal model-
ing architectural framework that supports concepts im-
portant to human-automation interaction. This encompasses
models of human missions (i.e. goals), human task behavior
(the translated EOFM instance), human-device interfaces
(displays and controls available to the human operator),
device automation (underlying device behavior), and the
operational environment [4].

PROBLEMS ADDRESSED

The formal nature of the framework allows models created
with it to be evaluated with a model checker. Model check-
ing is an automated formal verification process that ex-
haustively searches a system’s statespace to see if it can
find a violation of specification properties. If no violation is
found, the model checker has proven that the model adheres

to the specification. Otherwise, the model checker produces
a counterexample that illustrates how a violation occurred.

Thus, a model checker can be used on formal models that
contain translated EOFM instances to prove whether or not
the modeled human behavior, and the resulting human-
automation interaction, will contribute to a violation of sys-
tem safety (encoded in a specification property). This can
include any generated (and thus potentially unanticipated)
erroneous human behavior. System safety has been evaluat-
ed with normative human task behavior [9], normative hu-
man performance of checklist procedures [8], generated
phenotypical erroneous human behavior [5], and generated
erroneous human behavior caused by failures of attention
[7]. It is also possible to use the visual notation of the
EOFM to help analysts diagnose specification violations
reported in counterexamples [6].

APPLICATIONS

EOFM has been used with model checking to find problems
in, and explore design interventions for a number of appli-
cations. These include a Patient Controlled Analgesia Pump
[4, 3, 7], an automobile with a simple cruise control [9], an
aircraft instrument landing checklist procedure [8], and a
radiation therapy machine [5].

LIMITATIONS AND DEVELOPMENT OPPORTUNITIES

There are a number of potential development opportunities
for EOFM and its associated analyses. Firstly, analyses that
utilize EOFMs, especially those with erroneous human be-
havior generation, do not scale well [2]. Thus current work
is investigating ways of improving the EOFM to SAL trans-
lation in order to improve scalability. Secondly, the pre-
sented method has almost exclusively been used to evaluate
single operator systems. However, ongoing research is in-
vestigating how to model human communication and coor-
dination with EOFM [1]. Thirdly, in order to assist analysts
in evaluating human-automation interaction with EOFM,
work is currently investigating how specification properties
indicative of good human-automation interaction can be
generated automatically from instantiated EOFMs and used
in formal verification analyses [3]. Finally, EOFM currently
does not integrate with other infrastructures designed to
evaluate human-automation interaction formally (see [2]).
Future work should attempt to rectify this limitation.

ACKNOWLEDGEMENT

The project described was supported in part by Grant Num-
ber T15LM009462 from the National Library of Medicine
(NLM), NASA Cooperative Agreement NCC1002043, and
NASA award NNA10DE79C. The content is solely the
responsibility of the authors and does not necessarily repre-
sent the official views of the NIA, NASA, the NLM, or the
National Institutes of Health.

REFERENCES

1. Bass, E. J., Bolton, M. L., Feigh, K., Griffith, D., Gun-
ter, E., Mansky, W., and Rushby, J. Toward a multi-
method approach to formalizing human-automation in-
teraction and human-human communications. In Pro-

ceedings of the IEEE International Conference on Sys-

tems, Man, and Cybernetics, IEEE (Piscataway, 2011),
1817–1824.

2. Bolton, M. L. Using Task Analytic Behavior Modeling,

Erroneous Human Behavior Generation, and Formal

Methods to Evaluate the Role of Human-automation

Interaction in System Failure. PhD thesis, University
of Virginia, Charlottesville, 2010.

3. Bolton, M. L. Validating human-device interfaces with
model checking and temporal logic properties automat-
ically generated from task analytic models. In Proceed-

ings of the 20th Behavior Representation in Modeling

and Simulation Conference, The BRIMS Society (Sun-
dance, 2011), 130–137.

4. Bolton, M. L., and Bass, E. J. Formally verifying hu-
man-automation interaction as part of a system model:

Limitations and tradeoffs. Innovations in Systems and

Software Engineering: A NASA Journal 6, 3 (2010),
219–231.

5. Bolton, M. L., and Bass, E. J. Using task analytic mod-
els and phenotypes of erroneous human behavior to
discover system failures using model checking. In Pro-

ceedings of the 54th Annual Meeting of the Human

Factors and Ergonomics Society, Human Factors and
Ergonomics Society (Santa Monica, 2010), 992–996.

6. Bolton, M. L., and Bass, E. J. Using task analytic mod-
els to visualize model checker counterexamples. In
Proceedings of the 2010 IEEE International Confer-

ence on Systems, Man, and Cybernetics, IEEE (Pisca-
taway, 2010), 2069–2074.

7. Bolton, M. L., and Bass, E. J. Evaluating human-
automation interaction using task analytic behavior
models, strategic knowledge-based erroneous human
behavior generation, and model checking. In Proceed-

ings of the IEEE International Conference on Systems

Man and Cybernetics, IEEE (Piscataway, 2011). in
press.

8. Bolton, M. L., and Bass, E. J. Using model checking to
explore checklist-guided pilot behavior. International

Journal of Aviation Psychology (In Press).
9. Bolton, M. L., Siminiceanu, R. I., and Bass, E. J. A

systematic approach to model checking human-
automation interaction using task-analytic models.
IEEE Transactions on Systems, Man, and Cybernetics,

Part A 41, 5 (2011), 961–976.
10. De Moura, L., Owre, S., and Shankar, N. The SAL

language manual. Tech. Rep. CSL-01-01, Computer
Science Laboratory, SRI International, Menlo Park,
2003.

11. Hollnagel, E. The phenotype of erroneous actions. In-

ternational Journal of Man-Machine Studies 39, 1
(1993), 1–32.

12. Kirwan, B., and Ainsworth, L. K. A Guide to Task

Analysis. Taylor and Francis, London, 1992.
13. Mitchell, C. M., and Miller, R. A. A discrete control

model of operator function: A methodology for infor-
mation display design. IEEE Transactions on Systems

Man Cybernetics Part A: Systems and Humans 16, 3
(1986), 343–357.

14. Reason, J. Human Error. Cambridge University Press,
New York, 1990.

