
Using Task Analytic Models and Phenotypes of Erroneous Human Behavior
to Discover System Failures Using Model Checking

Matthew L. Bolton and Ellen J. Bass
Department of Systems and Information Engineering

University of Virginia
Charlottesville, VA

Breakdowns in complex systems often occur as a result of system elements interacting in ways unanticipated
by analysts or designers. In systems with human operators, human-automation interaction associated with
both normative and erroneous human behavior can contribute to such failures. This paper presents a method
for automatically generating task analytic models encompassing both erroneous and normative human behav-
ior from normative task models. The resulting model can be integrated into a formal system model so that
system safety properties can be formally verified with a model checker. This allows analysts to prove that a
human automation-interactive system (as represented by the model) will or will not satisfy safety properties
with both normative and generated erroneous human behavior. This method is illustrated with a case study:
the operation of a radiation therapy machine. In this example, a problem resulting from a generated erroneous
human action is discovered. Future extensions of our method are discussed.

INTRODUCTION

Complex, safety-critical systems involve the interaction of
automated devices and goal-oriented human operators in a dy-
namic environment. Human-automation interaction (HAI), and
particularly erroneous human behavior, can contribute to their
failure (Reason, 1990; Hollnagel, 1993b). Two research ar-
eas, HAI and formal methods, have attempted to address these
problems from different directions. HAI researchers investi-
gate the way human operators interact with automation for the
purpose of designing systems that facilitate safe, human work
through the use of field studies, design principles, controlled
experiments, and modeling and simulation analyses (Sheridan
& Parasuraman, 2005). Formal methods researchers use well
defined mathematical modeling and proof techniques to ver-
ify that system models do or do not exhibit desired properties
(Wing, 1990). Model checking (Clarke, Grumberg, & Peled,
1999) is a type of formal verification that searches a model’s
entire statespace in order to find violations of properties written
in temporal logic. The model checker will indicate if the spec-
ification is valid. Otherwise, it returns a counterexample: an
execution trace illustrating how the specification was violated.

HAI analyses account for human behavior but risk missing
potentially dangerous system states or interactions. Formal ver-
ification can guarantee that all modeled conditions will be an-
alyzed during formal verification of safety properties and other
invariants, but only for models that can fit in the memory of the
computer being used for the analysis (Clarke et al., 1999).

In order to exploit the advantages offered by both domains,
researchers have used formal verification to:

1. Evaluate human-device interfaces (HDIs) (Abowd, Wang,
& Monk, 1995; Campos & Harrison, 2008);

2. Discover and eliminate potential mode confusion (Degani
& Heymann, 2002; Bredereke & Lankenau, 2005);

3. Verify the safe operation of systems with cognitively plau-
sible behavior using cognitive modeling (Lindsay & Con-
nelly, 2002; Curzon, Rukšėnas, & Blandford, 2007); and

4. Verify the safety of task analytic models (Aït-Ameur &
Baron, 2006; Fields, 2001).

See Bolton (2010) for an in-depth survey of these techniques.

Prior work manually incorporated erroneous human behav-
iors into task analytic models (Fields, 2001; Bastide & Basnyat,
2007). We show that erroneous human behavior can be auto-
matically incorporated into task analytic models and that the
resulting models can be used to formally verify system safety
properties. We discuss the relevant literature on erroneous hu-
man behavior and show how erroneous human behavior genera-
tion can be integrated into our existing method (Bolton & Bass,
2009b) which has previously been used to verify systems with
normative task analytic models (discussed below). We illustrate
this process with a radiation therapy machine example.

Formal Verification of HAI

Our method (Bolton & Bass, 2009b) utilizes a formal mod-
eling architectural framework which encompasses models of
human missions (i.e. goals), human task behavior, HDIs, de-
vice automation, and the operational environment (Bolton &
Bass, 2010). Human task behavior models are created using
a task modeling language called Enhanced Operator Function
Model (EOFM) (Bolton & Bass, 2009a; Bolton, Siminiceanu,
& Bass, n.d.) which extends the Operator Function Model
(OFM) (Mitchell & Miller, 1986). EOFMs are hierarchical and
heterarchical representations of goal-driven activities that de-
compose into lower level activities, and, finally, atomic actions.
EOFMs express task knowledge by explicitly specifying the
conditions under which human operator activities can execute
(preconditions), repeat (repeat conditions), and complete (com-
pletion conditions). Any activity can decompose into one or
more other activities or one or more actions. A decomposition
operator specifies the temporal relationships between and the
cardinality of the decomposed activities or actions (when they
can execute relative to each other and how many can execute).

EOFMs can be represented visually as a tree-like graph (see
Figure 4). Actions are rectangles and activities are rounded rect-
angles. An activity’s decomposition is presented as an arrow,
labeled with the decomposition operator, that points to a large
rounded rectangle containing the decomposed activities or ac-
tions. In the work presented here, three decomposition opera-
tors are used: (a) ord (all activities or actions in the decompo-
sition must execute in the order they appear); (b) or_seq (one
or more of the activities or actions in the decomposition must

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 54th ANNUAL MEETING - 2010 992

C
op

yr
ig

ht
 2

01
0 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

S
oc

ie
ty

, I
nc

. A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
15

18
/1

07
11

81
10

X
12

82
93

69
83

27
64

 at HFES-Human Factors and Ergonomics Society on August 21, 2012pro.sagepub.comDownloaded from 

http://pro.sagepub.com/


execute); and (c) xor (exactly one activity or action in the de-
composition must execute). Conditions on activities are repre-
sented as shapes or arrows (annotated with the condition logic)
connected to the activity that they constrain. A precondition is
a yellow, downward-pointing triangle; a completion condition
is a magenta, upward-pointing triangle; and a repeat condition
is an arrow recursively pointing to the top of the activity.

When used as part of a formal system model, instantiated
EOFM task models are translated into the language of the Sym-
bolic Analysis Laboratory (SAL) (De Moura, Owre, & Shankar,
2003) using the language’s formal semantics (Bolton et al.,
n.d.). Formal verifications are performed on the complete sys-
tem model using SAL’s symbolic model checker (SAL-SMC).
Any produced counterexamples can be visualized and evaluated
using EOFM’s visual notation (Bolton & Bass, in press).

Erroneous Human Behavior

Erroneous human behaviors have been classified based on
how they arise from human decision making, cognition, and
task execution (Jones, 1997). Instantiated EOFMs do not model
low level perceptual, motor, and cognitive processes. However,
they do model human task behavior hierarchically down to the
atomic, observable action level. Thus they are compatible with
Hollnagel’s (1993b) phenotypes of erroneous action.

Hollnagel (1993b) classified erroneous human behavior
based on its observable manifestation as divergences from
planned or normative sequences of actions. All erroneous be-
haviors are composed of one or more erroneous actions, all ca-
pable of being detected by observing the performance of a sin-
gle act in a plan. These “zero-order” phenotypes include: pre-
maturely starting an action, delaying the start of an action, pre-
maturely finishing an action, delaying the completion of an ac-
tion, omitting an action, jumping forward (performing an action
that should be performed later), jumping backward (performing
a previously performed action), repeating an action, and per-
forming an unplanned action (an intrusion). Higher order phe-
notypes are composed of at least two zero-order phenotypes.

The phenotypes for delays and premature starts and finishes
specifically refer to time, not currently supported by our method
(Bolton & Bass, 2009b). However, all of the other zero-order
phenotypes relate to the performance or non-performance of ac-
tions; all of which are compatible with the formal semantics and
structure of the EOFM. In this work, we introduce a method that
automatically generates these phenotypes as part of an instanti-
ated EOFM that captures normative behavior.

AUTOMATIC ERRONEOUS HUMAN
BEHAVIOR GENERATION

The erroneous behavior generation process must be capa-
ble of replicating Hollnagel’s (1993b) zero-order phenotypes
for omitting, jumping to, repeating, or intruding an action for
each original action in an instantiated EOFM. To allow for more
complex erroneous human behaviors, the generation process
must allow zero-order erroneous acts to be chained together.
An unconstrained number of erroneous acts could result in an
unbounded human task behavior model which would negate the
explanatory power afforded by using task models. Thus, the er-
roneous behavior generation process must be able to constrain
the number of erroneous acts that can be performed in the for-
mally translated, erroneous human behavior model. In order to
facilitate analysis, the EOFM to SAL translation process, and

counterexample interpretation; the erroneous behavior genera-
tion structure should be represented in the EOFM language.

To generate erroneous actions, zero-order phenotypes for
omissions, skips, jumps, repetitions, and intrusions are incor-
porated into an instantiated EOFM by replacing each atomic
action (Actionx) with a customized structure (Actionx’) (Figure
1). This design includes an upper bound on the number of erro-
neous acts (EMax) and a variable (ECount) that keeps track of
the number of erroneous acts that the task model has performed.
Any activity that represents an erroneous act has a precondition
asserting that it can only be executed if the current number of
performed erroneous actions is less than the maximum (ECount
< EMax). Every time an activity representing an erroneous act
executes, ECount is incremented by one (ECount++).

Actionx’ decomposes into several additional activities, al-
lowing Actionx’ to complete execution if one or more of
these activities executes (the or_seq decomposition operator).
CorrectAction allows the original correct action (Actionx) to be
performed. The Omission activity allows an operator to perform
the erroneous act of omitting the original action, represented as
the DoNothing action. The Commission activities each allow
a single erroneous action to be performed (the xor decomposi-
tion operator), where the set of erroneous actions corresponds
to the n human actions available to the human operator. There
are ECount Commission activities, thus allowing up to ECount
erroneous actions to occur in place of the original action.

This design allows the specified zero-order erroneous be-
havior phenotypes to be generated when the EOFM executes.
Omissions occur through the Omission activity. Repetitions,
forward or backward jumps, or intrusions can occur by execut-
ing either the current action, another planned action, or some
other action respectively through one of the Commission activi-
ties. Multiple erroneous actions can occur instead of, before, or
after the correct action due to the or_seq decomposition. Mul-
tiple erroneous acts can also occur between erroneous behavior
generating structures for different actions. Thus, the use of this
structure allows for single erroneous actions as well as more
complicated erroneous behaviors to be generated.

Our Java-based EOFM to SAL translator (Bolton et al.,
n.d.) was modified to optionally incorporate erroneous behavior
into any instantiated EOFM. The translator takes the maximum
number of erroneous acts (EMax) as input and traverses the
EOFM structure, replacing each action with its corresponding
erroneous behavior generative structure (Figure 1). The transla-
tor represents EMax as a constant. It modifies each human oper-
ator by adding a local variable representing the current number
of performed erroneous acts (ECount, which can assume a value
from 0 to EMax) and a DoNothing human action.

Actionx’

or_seq

ord

Actionx

Omission
ECount < EMax

ord

Do
Nothing

Commission1

ECount < EMax

xor

. . .

ECount++ ECount++

. . .

Actionx

Actionn

CommissionEMax

ECount < EMax

“ ”

xor

ECount++

. . .Action1 Actionx

Becomes

Correct
Action

Figure 1. Visualization of the EOFM structure used to gener-
ate a zero-order phenotypical erroneous human behavior.

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 54th ANNUAL MEETING - 2010 993

 at HFES-Human Factors and Ergonomics Society on August 21, 2012pro.sagepub.comDownloaded from 

http://pro.sagepub.com/


The translator produces two files as output. The first is an
EOFM XML file representing the created erroneous human be-
havior model (separate from the model of normative behavior).
The second is the translated SAL representation of this model.

APPLICATION

To demonstrate the erroneous behavior generation method,
we evaluate a model of a human operated radiation therapy ma-
chine. This device is a room-sized, computer-controlled, medi-
cal linear accelerator. It has two treatment modes: the electron
beam mode is used for shallow tissue treatment, and the xray
mode is used for deeper treatments - requiring electron beam
current approximately 100 times greater than that used for the
electron beam mode. The xray mode uses a beam spreader (not
used in electron beam mode) to produce a uniform treatment
area and attenuate the radiation of the beam. The machine is
capable of delivering a lethal dose of radiation to a patient if an
xray treatment is administered without the spreader in place.

Human-device Interface

The HDI model (Figure 2) encompasses the behavior of
the interface for selecting and administering treatments. It rep-
resents the information on a computer monitor in response to
five relevant keyboard keys (‘X’, ‘E’, enter, up and ‘B’). The
interface states (InterfaceState) starts in Edit where the human
operator can press ‘X’ or ‘E’ (PressX or PressE) to select the
xray or electron beam mode and transition to the ConfirmXray-
Data or ConfirmEBeamData states respectively. When in the
ConfirmXrayData or ConfirmEBeamData states, the appropri-
ate treatment data is displayed (DisplayedData), and the hu-
man operator can confirm the displayed data by pressing enter
(advancing to the PrepareToFireXray or PrepareToFireEBeam
states) or return to the Edit state by pressing up (PressUp) on the
keyboard. In the PrepareToFireXray or PrepareToFireEBeam
states, the human operator must wait for the beam to become
ready (BeamState), at which point he can press ‘B’ (PressB) to
administer treatment by firing the beam. This transitions the
interface state to TreatmentAdministered. The operator can also
return to the previous data confirmation state by pressing up.

Device Automation

The device automation model (Figure 3) encompasses sys-
tem behavior related to the power level of the beam (Beam-
Level), the position of the spreader (Spreader), and the firing of
the beam (BeamFireState). The power level of the beam (Beam-
Level) is initially not set (NotSet). When the human operator
selects the xray or electron beam treatment mode, the power
level transitions to the appropriate setting (XrayLevel or EBeam-
Level respectively). However, if the human operator selects a
new power level, there is a delay in the transition to the correct
power level, where it remains in an intermediary state (XtoE or
EtoX) at the old power level before automatically transitioning
to the new one. The position of the spreader (Spreader) starts
either in or out of place (InPlace or OutOfPlace). When the hu-
man operator selects the xray or electron beam treatment mode,
the spreader transitions to the appropriate setting (InPlace or
OutOfPlace respectively). The firing state of the beam (Beam-
FireState) is initially waiting to be fired (Waiting). When the
human operator fires the beam (pressing ‘B’ when the beam is
ready), the beam fires (Fired) and returns to its waiting state.

Edit

Confirm
EBeamData

Confirm
XrayData

PrepareTo
FireEBeam

PrepareTo
FireXray

Treatment 
Administered

PressUp PressEnter

PressX PressE

PressEnter PressUp

BeamState = Ready 
˄ PressB

BeamState = Ready 
˄ PressB

NotReady Ready

InterfaceState = PrepareToFireXray
˅ InterfaceState = PrepareToFireEBeam

InterfaceState ≠ PrepareToFireXray
˅ InterfaceState ≠ PrepareToFireEBeam

InterfaceState

DisplayedData

NoData

EBeamDataXrayData

InterfaceState = Edit 
˄ PressX

InterfaceState = Edit 
˄ PressE

InterfaceState = ConfirmXrayData
˄ PressUp

InterfaceState = ConfirmEBeamData
˄ PressUp

BeamState

PressUpPressUp

Figure 2. State transition representation of the formal human-
device interface model. Rounded rectangles represent states.
Arrows between states represent transitions. Initial states are
pointed to by arrows starting with a dot.

EBeamPowerLevelXrayPowerLevel

NotSet

XrayLevel

XtoE

EBeamLevel

EtoX

InterfaceState = Edit ˄ PressX InterfaceState = Edit ˄ PressE

InterfaceState = Edit 
˄ PressE

InterfaceState = Edit 
˄ PressX

InterfaceState = Edit ˄ PressX InterfaceState = Edit ˄ PressE

InterfaceState = Edit ˄ PressX

InterfaceState = Edit 
˄ PressE

OutOfPlace InPlace

BeamState = Ready ˄ PressB

Fired Waiting

BeamLevel

SpreaderBeamFireState

Figure 3. State transition representation of the formal device
automation model.

Human Mission

The human mission identifies the desired treatment (Treat-
mentType equaling Xray or EBeam).

Human Task Behavior

Three goal directed task models describe the administration
of treatment with the radiation therapy machine (Figure 4): se-
lecting the treatment mode (aSelectXorE), confirming treatment
data (aConfirm), and firing the beam (aFire).

These models access input variables from the HDI (the in-
terface state (InterfaceState), the displayed treatment data (Dis-
playedData), and the ready status of the beam (BeamState)) and
the mission (treatment type (TreatmentType)) to generate the hu-
man actions for pressing the appropriate keyboard keys.

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 54th ANNUAL MEETING - 2010 994

 at HFES-Human Factors and Ergonomics Society on August 21, 2012pro.sagepub.comDownloaded from 

http://pro.sagepub.com/


aSelect
XorE

InterfaceState = Edit InterfaceState /= Edit

xor

aSelect
Xray

TreatmentType = Xray

ord

PressX

aSelect
EBeam

TreatmentType = EBeam

ord

PressE

aFireInterfaceState = PrepareToFireXray OR
InterfaceState = PrepareToFireEBeam

InterfaceState /= PrepareToFireXray AND
InterfaceState /= PrepareToFireEBeam

xor

aFire
Beam

BeamState = Ready

ord

PressB

aGoBack

ord

PressUp

InterfaceState = ConfirmEBeamData OR
InterfaceState = ConfirmEBeamData

InterfaceState /= ConfirmEBeamData AND
InterfaceState /= ConfirmEBeamData

xor

aConfirm
Data

ord

Press
Enter

aGoBack

ord

PressUp

(TreatmentType = EBeam 
AND DisplayData = EBeamData) 

OR (TreatmentType = Xray 
AND DisplayData = XrayData)

aConfirm

Figure 4. Visualization of the EOFMs for interacting with the radiation therapy machine: selecting the treatment mode (aXorE),
confirming treatment data (aConfirm), and firing the beam (aFire).

The practitioner can select the treatment mode (aSelectX-
orE) when the interface is in the Edit state by performing either
the PressX or PressE actions based on the mission Treatment-
Type. The practitioner can choose whether or not to confirm dis-
played treatment data (aConfirm) when the interface is in either
of the two data confirmation states. If the displayed data corre-
sponds to the desired treatment mode, the practitioner confirms
it with a PressEnter action. He or she can return to the Edit state
via a PressUp action. The practitioner decides whether or not
to administer treatment (aFire) when the interface is in either of
the states for preparing to fire the beam. He or she can fire the
beam (if the beam is ready) by pressing ‘B’ (PressB) or return
to the previous interface state by pressing up (PressUp).

EOFM to SAL Translation

The EOFM instance was translated twice into SAL code
and incorporated into the larger formal system model: once
with normative behavior and once with erroneous human be-
havior with a maximum of one erroneous act. The normative
behavior model’s EOFM representation was 74 lines of code.
Its corresponding formal representation was 166 lines of SAL
code. The produced erroneous EOFM model was 240 lines of
code. Its formal representation was 641 lines of SAL code.

Specification and Verification

We specify that we never want the radiation therapy ma-
chine to irradiate a patient by administering an unshielded xray
treatment using Linear Temporal Logic as follows:

G¬

 BeamFireState = Fired
∧ BeamLevel = XrayPowerLevel
∧ Spreader = OutOfPlace

 (1)

When checked against the formal system model with the
translated normative task behavior, this verified to true in less
than one second having visited 1648 states.

The formal system model containing the erroneous human
behavior (which had 45290 states) produced a counterexample
after 38 seconds illustrating the following failure sequence:

1. The model initialized with the interface in the edit state
with no displayed data and the beam not ready; the beam
power level not set; the spreader out of place; the beam fire
state waiting; and the human mission indicating that the hu-
man operator should administer electron beam treatment.

2. When attempting to select the electron beam mode, the
practitioner erroneously pressed ‘X’ instead of ‘E’ (via a
generated Commission activity in aSelectXorE from Figure
4). This caused the interface to transition to the xray data
confirmation state and display the xray treatment data. The
spreader was also moved in place and the beam was set to
the xray power level.

3. Because the incorrect data was displayed, the practitioner
pressed up to return the interface to the edit mode.

4. The practitioner selected electron beam treatment mode by
pressing the ‘E’ key. The interface transitioned to the elec-
tron beam data confirmation state and displayed the elec-
tron beam treatment data. The spreader was moved out of
place and the beam prepared to transition to the electron
beam power level (XtoE in Figure 4).

5. The practitioner confirmed the treatment data by pressing
enter and the interface transitioned to the electron beam’s
waiting to fire state.

6. The beam became ready.
7. The practitioner fired the beam by pressing ‘B’. Because

the beam power level had not yet transitioned to the elec-
tron beam power level, the beam fired at the xray power
level with the spreader out of place.

DISCUSSION

The generation process satisfies all of our goals for includ-
ing erroneous human behavior in the formal verification of HAI:

1. Using an EOFM task structure to replace every action in
an instantiated EOFM, we are capable of generating zero-
order phenotypes of erroneous human action: omitting an
action, jumping to another planned action, repeating the
last performed action, or intruding an action.

2. The use of the structure in each action, and the use of the
or_seq decomposition operator in the erroneous behavior
generation structure allow multiple zero-order phenotypi-
cal erroneous acts to generate all of Hollnagel’s first-order
phenotypes except for time compression.

3. The number of possible erroneous acts is constrained by
a maximum and a counter preventing the task behavior
model from becoming unbounded.

4. The erroneous behavior generation structure is represented
in EOFM constructs and is thus compatible with the EOFM
to SAL translator and counterexample visualizer.

The radiation therapy machine example illustrates how this
process can be used to find potential system failures associated

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 54th ANNUAL MEETING - 2010 995

 at HFES-Human Factors and Ergonomics Society on August 21, 2012pro.sagepub.comDownloaded from 

http://pro.sagepub.com/


with erroneous human behavior. The discovered problem is
very similar to real problems found in radiation therapy ma-
chines which have resulted in patient injury and death (Leveson
& Turner, 1993; Bogdanich, 2010).

Benchmarking

The erroneous behavior generation process increases the
amount of structure necessary to formally represent the task be-
havior and the amount of structure increases with the number of
allowable erroneous behaviors. Given that formal verification
is limited by the size of the system model, the use of erroneous
human behavior generation may be limited by the size of the
target model. Future work should characterize how erroneous
behavior generation impacts model statespace complexity.

Optimization

In the current implementation there are situations where
non-erroneous acts are counted as erroneous. For example,
the correct action could be executed through a Commission ac-
tivity without the CorrectAction activity executing. Similarly,
the current structure allows for the same erroneous acts to be
performed in multiple ways. For example, a given erroneous
act could be performed through different Commission activi-
ties. The structure used to generate erroneous human behavior
should be optimized to eliminate such redundancies.

Erroneous Human Behavior Generation

Our method currently does not support Hollnagel’s (1993b)
phenotypes for prematurely starting or finishing an action, or
delaying the start or completion of an action. Future work
should investigate if these types of erroneous behaviors can be
automatically generated as an extension of our method. In ad-
dition, there are cognitive reasons why specific sequences of
erroneous behavior phenotypes may be more likely than others
(Reason, 1990). Future work should determine if it is possible
to use cognitive principals to automatically generate erroneous
behaviors from normative task analytic behavior models.

Comparison with Other Methods

Our method supports the generation of erroneous human
behavior comparable to that generated using formal models of
cognition (Curzon et al., 2007). Future work should investigate
if there are any discrepancies between the erroneous behaviors
generated by this technique and ours, and determine if there are
applications better suited to analyses with either approach.

Human Reliability Analysis (HRA) (Hollnagel, 1993a) is a
more established system evaluation technique which allows an-
alysts to assess the probability of failures in light of erroneous
human behavior. Future work should determine what the advan-
tages and disadvantage of HRA are compared to our technique.

ACKNOWLEDGEMENT

This work was supported in part by National Library of
Medicine (NLM) grant T15LM009462 and Research Grant
Agreement UVA-03-01, sub-award 6073-VA and 2723-VA
from the National Institute of Aerospace (NIA). The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the NIA, NASA, NLM, or NIH.
The authors thank Radu Siminiceanu of the NIA and Ben Di
Vito of the NASA Langley Research Center for technical help.

REFERENCES
Abowd, G. D., Wang, H., & Monk, A. F. (1995). A formal technique for

automated dialogue development. In Proceedings of the 1st Conference
on Designing Interactive Systems (pp. 219–226). New York: ACM.

Aït-Ameur, Y., & Baron, M. (2006). Formal and experimental validation ap-
proaches in HCI systems design based on a shared event B model. Interna-
tional Journal on Software Tools for Technology Transfer, 8(6), 547–563.

Bastide, R., & Basnyat, S. (2007). Error patterns: Systematic investigation of
deviations in task models. In Task models and diagrams for users interface
design (pp. 109–121). Berlin: Springer.

Bogdanich, W. (2010, January 23). The radiation boom: Radiation offers new
cures, and ways to do harm. The New York Times.

Bolton, M. L. (2010). Using task analytic behavior modeling, erroneous human
behavior generation, and formal methods to evaluate the role of human-
automation interaction in system failure. Unpublished doctoral disserta-
tion, University of Virginia, Charlottesville.

Bolton, M. L., & Bass, E. J. (2009a). Enhanced operator function model:
A generic human task behavior modeling language. In Proceedings of
the IEEE International Conference on Systems Man and Cybernetics (pp.
2983–2990). Piscataway: IEEE.

Bolton, M. L., & Bass, E. J. (2009b). A method for the formal verification of
human interactive systems. In Proceedings of the 53rd Annual Meeting of
the Human Factors and Ergonomics Society (pp. 764–768). Santa Monica:
Human Factors and Ergonomics Society.

Bolton, M. L., & Bass, E. J. (2010). Formally verifying human-automation
interaction as part of a system model: Limitations and tradeoffs. In-
novations in Systems and Software Engineering: A NASA Journal.
doi : 10.1007/s11334 − 010 − 0129 − 9.

Bolton, M. L., & Bass, E. J. (in press). Using task analytic models to visualize
model checker counterexamples. In Proceedings of the IEEE Interna-
tional Conference on Systems Man and Cybernetics. Piscataway: IEEE.

Bolton, M. L., Siminiceanu, R. I., & Bass, E. J. (n.d.). A systematic approach to
model checking human-automation interaction using task-analytic mod-
els. Under review.

Bredereke, J., & Lankenau, A. (2005). Safety-relevant mode confusions–
modelling and reducing them. Reliability Engineering and System Safety,
88(3), 229–245.

Campos, J. C., & Harrison, M. D. (2008). Systematic analysis of control panel
interfaces using formal tools. In Proceedings of the 15th International
Workshop on the Design, Verification and Specification of Interactive Sys-
tems (pp. 72–85). Berlin: Springer.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cam-
bridge: MIT Press.

Curzon, P., Rukšėnas, R., & Blandford, A. (2007). An approach to formal ver-
ification of humanŰcomputer interaction. Formal Aspects of Computing,
19(4), 513–550.

Degani, A., & Heymann, M. (2002). Formal verification of human-automation
interaction. Human Factors, 44(1), 28–43.

De Moura, L., Owre, S., & Shankar, N. (2003). The SAL language manual
(Tech. Rep. No. CSL-01-01). Menlo Park: Computer Science Laboratory,
SRI International.

Fields, R. E. (2001). Analysis of erroneous actions in the design of critical
systems. Unpublished doctoral dissertation, University of York, York.

Hollnagel, E. (1993a). Human reliability analysis: Context and control. Aca-
demic Press.

Hollnagel, E. (1993b). The phenotype of erroneous actions. International
Journal of Man-Machine Studies, 39(1), 1–32.

Jones, P. M. (1997). Human error and its amelioration. In Handbook of systems
engineering and management (pp. 687–702). Malden: Wiley.

Leveson, N. G., & Turner, C. S. (1993). An investigation of the therac-25
accidents. Computer, 26(7), 18–41.

Lindsay, P., & Connelly, S. (2002). Modelling erroneous operator behaviours
for an air-traffic control task. In Proceedings of the 3rd Australasian User
Interface Conference (Vol. 7, p. 43-54). Melbourne: ACS.

Mitchell, C. M., & Miller, R. A. (1986). A discrete control model of operator
function: A methodology for information dislay design. IEEE Transac-
tions on Systems Man Cybernetics Part A: Systems and Humans, 16(3),
343–357.

Reason, J. (1990). Human error. New York: Cambridge University Press.
Sheridan, T. B., & Parasuraman, R. (2005). Human-automation interaction.

Reviews of human factors and ergonomics, 1(1), 89–129.
Wing, J. M. (1990). A specifier’s introduction to formal methods. Computer,

23(9), 8, 10–22, 24.

PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 54th ANNUAL MEETING - 2010 996

 at HFES-Human Factors and Ergonomics Society on August 21, 2012pro.sagepub.comDownloaded from 

http://pro.sagepub.com/



