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User-centered design (UCD) is an approach for creating human-machine interfaces so that they support human operator
tasks. UCD can be challenging because designers can fail to account for human-machine interactions that occur due to
the inherent concurrence between the human and the other elements of the system. Formal methods are tools that enable

analysts to consider all of the possible system interactions using a combination of formal modeling, specification, and

proof-based verification. However, the creation of formal models of interface designs can be extremely difficult. This

work describes a method that supports UCD by automatically generating formal designs of human-machine interface
behavior from task analytic models, where the resulting interface will always support the behavior captured in the task
model. This paper describes the method and demonstrates its capabilities with a vending machine application. Results

and future research directions are discussed.

INTRODUCTION

User-centered design (UCD) is an approach for creating
human-machine interfaces that will support the human opera-
tor’s tasks (DIS, ISO, 2009). In human factors engineering,
task models, the product of task analyses, represent how hu-
mans normatively achieve system goals (Kirwan & Ainsworth,
1992). UCDs can be difficult to realize because the inherent
complexity of human-machine interaction can result in design-
ers not accounting for human interactions in all situations. Such
oversights can result in poor system adoption, decreased pro-
ductivity, and/or unsafe operations.

Formal methods are tools and techniques that allow an-
alysts to use proof-based techniques to exhaustively consider
the different possible system interactions (Clarke, Grumberg,
& Peled, 1999). Emerging approaches use formal methods in
the design and analysis of human-machine systems (Bolton,
Bass, & Siminiceanu, 2013; Degani & Heymann, 2002). Such
methods are powerful, but require formal modeling of human-
machine interfaces, a process that can be difficult and prone to
error (Heitmeyer, 1998). Thus, there is a need for techniques
to allow designers to easily create formal interface designs that
support operator tasks.

In this paper, we present a method (originally proposed in
Bolton and Ebrahimi 2014) that can automatically generate for-
mal models of human-machine interface behavior from task an-
alytic models such that these resulting formal designs will be
guaranteed to support the behavior captured by the task models.
To do this, we make use of an L* learning algorithm (Angluin,
1987) for learning formal system models.

This paper describes the necessary background for under-
standing our method, the objectives for its development, and its
implementation. We illustrate the capabilities of the method by
showing how it can be used to automatically generate the inter-
face for a soda vending machine. Finally, we discuss our results
and explore avenues of future research.

BACKGROUND
Formal Methods

Formal methods are tools and techniques for the formal
modeling, specification, and verification of systems (Clarke
et al.,, 1999). The formal model describes the behavior of a

target system mathematically. Specification properties mathe-
matically describe desirable system conditions (usually using
a temporal logic). Formal verification is the process of prov-
ing that the system model adheres to the specification. Model
checking is a common form of formal verification that performs
its proofs automatically using extremely efficient search algo-
rithms (Clarke et al., 1999). In model checking, if a specifica-
tion property holds over a formal model, the model checker re-
turns a confirmation. If the property is false, the model checker
returns a trace through the model, called a counterexample, that
shows exactly how the violation occurred. While they are more
typically used in the analyses of computer software and hard-
ware, a growing body of work is investigating how formal meth-
ods can be used in the engineering of human-machine systems
(Bolton et al., 2013).

Formal Models of Human-Machine Interfaces

To be used in formal verifications, human-machine inter-
faces must be formally modeled. While there are a number of
techniques for accomplishing this (see Bolton et al. 2013), all
generally follow the tradition set by Parnas (1969), where the
interface is a finite state automaton (FSA). In particular, most
human-machine interface models are represented as variants of
Mealy or Moore machines, where the interface transitions be-
tween states are based on human actions or other system events
and outputs are either determined by the current state (as with
Moore machines; Moore 1956) or by transitions between states
(as with Mealy machines; Mealy 1955). In this work, we will
use Mealy and Moore machines to formally describe human-
machine interface behavior.

Formal Models of Human Task Behavior

Formal models can also be used to represent human tasks
in formal verification analyses. Task models can be constructed
natively in a formalism or translated into one from a more stan-
dard task modeling notation. Formal task models can be paired
with formal models of other system behavior (including inter-
faces) and formal verification analyses can determine if the sys-
tem model is safe, free from deadlock, or exhibits other desir-
able usability properties (Bolton et al., 2013).

In the presented work, we are using the Enhance Oper-
ator Function Model (EOFM) (Bolton, Siminiceanu, & Bass,
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2011). EOFM is an XML-based task modeling language de-
signed to include task analytic human behavior in formal analy-
ses. EOFMs are represented as a hierarchy of goal driven activi-
ties that decompose into lower level activities, and at the bottom
of the hierarchy, atomic actions. Decomposition operators spec-
ify the temporal and cardinal relationships between activities or
actions in a decomposition. EOFMs also have conditions on ac-
tivities that can assert what must be true before an activity can
execute (preconditions), when it can repeat (repeat conditions),
and what must be true when it finishes (completion conditions).
EOFMs have formal semantics that precisely describe how it
executes and enables its use in formal verification analyses. Fi-
nally, EOFMs have a visual formalism that represents each task
as a tree-like graph (examples can be seen later in Figures 3-5).
EOFM is used in the work presented here.

L* Learning

L* machine learning is a process capable of generating a
formal model based on a series of queries to a teacher oracle
(Angluin, 1987). An L* algorithm will learn a minimal FSA for
accepting a language (the traditional role of an FSA). It does
this by iteratively generating and receiving answers to queries:
whether or not specific strings are in the language recognized by
the FSA, and whether a given FSA properly recognizes the lan-
guage. Variants of the original L* algorithm have been devel-
oped that allow for different types of FSA to be learned. In par-
ticular Raffelt, Steffen, and Berg (2005) have developed Learn-
Lib, a Java-based library that allows for the learning of Mealy
machines. In this implementation, the L* algorithm generates
queries representing sequences of inputs to the machine. The
teacher oracle examines this and returns a sequence of outputs
representing the proper machine response. This algorithm is ca-
pable of learning models consistent with Mealy machines, thus
enabling the automatic generation of human-machine interfaces
in the presented work.

Interface Design Generation

Prior work has investigated how to generate human-
computer interfaces from task models (Garcia, Lemaigre,
Gonzélez-Calleros, & Vanderdonckt, 2008; Tran, Kolp, Van-
derdonckt, Wautelet, & Faulkner, 2010). However, these ef-
forts were concerned with implementing human-computer in-
terfaces, not providing performance guarantees. The work of
Combéfis, Giannakopoulou, Pecheur, and Feary (2011) used L*
learning to generate interface designs from models of automa-
tion behavior so that mode confusion are avoided. Their effort
demonstrates that L* learning can generate interfaces that ad-
here to certain performance properties. However, their approach
does not fully consider the human operator task and thus does
not facilitate UCD.

OBJECTIVE

In this paper, we describe a method we developed that
supports UCD by automatically generating human-machine in-
terfaces from task models that were created as part of user-
centered task analyses. In this method, we use human task be-
havior models represented in the EOFM and the Mealy machine
learning capabilities of LearnLib’s L* algorithm implementa-

tions. Given the properties of the L* learning algorithm and the
formal nature of EOFM task models, the resulting learned de-
signs will be guaranteed to always support the human operator’s
task and thus UCD. In the remainder of this paper, we describe
our method, show how it can be used to generate an interface
design for a realistic system, discuss our results, and explore
future research directions.

METHODS

Our method (Figure 1) takes a task model as input. It ex-
tracts two “alphabets”: an input one representing the human ac-
tions that an interface can receive and an output one represent-
ing the information output state of the interface (input variable
values to the task model). These are sent to the learner. The
learner uses an L* algorithm that creates Mealy machines. It
does this through a series of queries to a teacher oracle. The
queries contain input sequences from the input alphabet (a se-
ries of human actions). The oracle answers the queries by re-
turning corresponding sequences of interface outputs.

The oracle works by first creating a formal model of the
human task behavior using a translator. The oracle then uses
a model checker to generate valid, query-based traces through
this representation to extract the requisite output response. To
accomplish this, the formal task behavior representation is
paired with a dummy interface model (also generated by the
translator) that is only capable of initializing interface outputs
and allowing their values to change in response to human ac-
tions (see the formal model architecture in Figure 2). Further,
the transition logic in the dummy interface model ensures that
each interface output can only change if the action being ex-
ecuted is part of a valid task execution sequence. To ensure
that the model will only consider the input/action sequence con-
tained in a query, another formal model is also included. This
model uses a synchronous observer architecture (Rushby, 2012)
to track the sequence of human actions that have occurred. If
the sequence from the query has been observed, an indicator
variable (SequenceObserved; Figure 1) becomes and stays true.

The aggregate formal model is then employed by the
teacher oracle that uses a model checker to prove the tempo-
ral logic property that the indicator variable will never be true
[G—(SequenceObserved)]. The effect of this is that, if the hu-
man action sequence in the query is valid, the model checker
will return a counterexample showing how the sequence can
occur. The oracle extracts the output alphabet sequence corre-
sponding to the input query from the counterexample. This is
sent back to the learner as a response.

Through iterative queries and responses between the
learner and the oracle, the learner will ultimately learn a Mealy
machine representation of the human-machine interface. In this,
the inputs represent human actions, outputs represent the state
of interface display information, and state represents the inter-
nal state of the interface.

The method was implemented in Java using EOFM task
models, the symbolic analysis laboratory’s (SAL’s) model
checkers (De Moura, Owre, & Shankar, 2003), the EOFM-to-
SAL translator (Bolton et al., 2011), and LearnLib’s (Raffelt et
al., 2005) L*-based Mealy machine learning algorithm.
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Figure 1. The method for automatically generating human-machine interfaces from task models and usability properties. Details of the

formal model’s architecture can be seen in Figure 2.
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Figure 2. Formal model architecture used by the teacher oracle
(Figure 1).

APPLICATION

To demonstrate the capabilities of our method, we use it to
learn the interface of a simplified beverage vending machine.
For this machine, we assume that it is only able to sell only
one kind of drink, where drinks cost 50 cents and the machine
exclusively accepts payment with quarters.

Task Modeling

We created an EOFM task model describing how we would
normatively want the human operator to interact with the ma-
chine (Figures 3-5). This model assumes that the human op-
erator can see how much money has been entered into the ma-
chine (iMoneyIn), if a drink has been vended (iDrinkOut), and
if any change has been returned (iMoneyOut). He or she can
perform actions for entering quarters (hEnterQuarter), pressing
the drink button (hPressDrinkButton), pressing the change re-
turn (hPressChangeReturn), picking up vended drinks (hPick-
UpDrink), and picking up returned change (hPickUpChange).
The behavior of the human operator was described using three
goal directed tasks for: entering money, acquiring a drink, and
retrieving change. Each task is described below.

Figure 3 shows the task for entering money. This task can
be performed when the money entered is less than the drink
price. To enter money, the human first notes how much money
is currently in the machine (IChangeln = iMoneyln from aRe-

iMoneyln < cDrinkPrice

aEnter
Money

ord

v

iMoneylIn = IChangeln + cQuarter

aRemember
aEnter
Changeln )
Coins
Value
I I
ord ord
IChangeln hEnter
=iMoneyln Quarter

Figure 3. Visualization of the EOFM task for entering money
into the drink vending machine. Activities are rounded rect-
angles, actions are unrounded rectangles. Preconditions and
completion conditions are yellow and magenta triangles, re-
spectively, connected to their associated activities and annotated
in condition logic. Activity decompositions are represented as
downward pointing arrows annotated with a decomposition op-
erator. Only the ordered (ord) decomposition is used here.

memberChangelnValue). Then, the human operator performs
the activity for entering a quarter (aEnterCoin). This is com-
pleted when the hEnterQuarter action is performed and the com-
pletion condition, that the money entered the machine is now a
quarter’s value more than before the new quarter was entered
(iMoneyIn = 1Changeln + cQuarter), is satisfied.

The task for getting a drink is shown in Figure 4. In this
task, once the money entered is greater than or equal to the drink
price, the human operator first presses the drink button, which
should result in a drink output and the entered money resetting
to zero. The human operator can then pick up the drink, which
should result in there no longer being a drink output.
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Figure 4. Visualization of the EOFM task for dispensing and
picking up a drink from the machine.

If the money entered in the machine is greater than zero,
the human operator can perform the task for returning change
(Figure 5). He or she first notes how much money is currently
in the machine (as was done when entering money) and then
presses the change return button. For this to complete success-
fully, the money in the machine must then drop to zero and the
money outputted must match what was in the machine before
the change return was pressed.

Interface Generation

This task model was used as input to the Java program
implementation of our method. The program ran for 124.41
seconds during which 186 queries were processed. The result-
ing interface model was converted from a Mealy machine to a
Moore machine (Figure 6) to improve readability.

Results

An examination of the generated interface (Figure 6) re-
veals that it meets the goals of the generation method: creating
an interface design that will always be compatible with the hu-
man operator task. The machine allows the human operator to
enter money until the correct drink price is reached. The ma-
chine will only vend a drink if the entered money is equal to the
drink price. If a drink is output, then the human operator can
pick it up, removing it from the machine. Whenever change has
been entered, the human can press the change return to get the
money as output, after which they can pick up the money.

An interesting feature of this interface design is that it uses
forcing functions to keep the human operator on task. For exam-
ple, once the money entered in the machine matches the drink
price, the machine will no longer accept quarters as input. This
behavior is different from drink machines most people are fa-
miliar with. This is discussed in the next section.

DISCUSSION AND FUTURE WORK

The work presented in this paper described a novel ap-
proach for using L* learning to automatically generate human-
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Changeln Change Chan g
Value Return 9
T T
ord ord ord
IChangeln hPress hPickUp
_. Change
=iMoneyln Change
Return

Figure 5. Visualization of the EOFM task for picking up change
returned by the machine.

machine interfaces. By learning interfaces from task analytic
behavior models, this method ensures that the interface will al-
ways support the human operator’s task behavior as captured in
by a task analysis and thus supports UCD. Further, because L*
learning ensures that a minimal model is produced, the states-
pace of the interface will also be minimal. This is a potentially
advantageous property because it ensures the minimal complex-
ity of the interface (Combéfis et al., 2011). The fact that the
generation process produced forcing function behavior in the
generated human-computer interface represents an interesting
phenomena that may or may not support good usability. This
and other factors will be explored in extensions of this effort.

Formal Verification of Generated Interfaces

While the interface generated in the presented application
was easy to examine manually, more complex applications may
not afford such straightforward assessments. Patterns of formal
specifications properties exist for checking that interfaces sup-
port usability (Bolton et al., 2013) and human operator tasks
(Bolton, Jimenez, van Paassen, & Trujillo, 2014). Future work
will investigate which of these properties are supported by the
presented generation method.

Additional Applications

The application presented in this paper is illustrative, but
simple. Additional complications could be discovered as the
method is used to generate more complex interfaces. For ex-
ample, because the method uses model checking, it is subject
to model checking’s scalability limitations (Clarke et al., 1999).
Thus, as we use the method to generate interfaces for more com-
plex applications, we will evaluate how the method scales.

Task Modeling for Interface Generation

In creating the task analytic models for the presented ap-
plication, several features of task models revealed themselves
to be important for successfully generating interfaces. First, it
was best to keep the task models as modular as possible. This
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ensured that model checking process could successfully find de-
sired execution sequences. Second, the task models needed to
be explicit about the conditions expected from the interface. For
example, when inserting money, the task model was required
to note the amount of money entered into the machine before
inserting an additional quarter. Further, the task’s completion
condition had to assert that the amount of money registered
in the machine was increased by 25 cents. Third, while non-
determinism is supported in EOFM (Bolton et al., 2011), the
L* learning algorithm assumes consistency in the answers to its
queries. This could result in situations where the L* learning
algorithm will fail to produce an interface. Thus, it is best to
keep task models deterministic. It is not clear if these modeling
practices will prove themselves to be compatible with standard
task modeling process. Future work will investigate this.

Incorporation of Usability Principles

Beyond task related properties, there are a variety of for-
mal usability specification properties that have been identified
(Bolton et al., 2013). Thus, it should be possible to incorporate
usability properties into the generation process discussed here.
This will be the subject of future research.

Finally, the work discussed here did not consider the graph-
ical representation of the human-machine interface. However,
the action flow information contained in a task model could con-
ceivably be used to influence the position and layout of interface
controls. Future work will investigate whether this can be ac-
counted for in the interface generation process.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 11S-1429910.

REFERENCES

Angluin, D. (1987). Learning regular sets from queries and counterexamples.
Information and computation, 75(2), 87-106.

Bolton, M. L., Bass, E. J., & Siminiceanu, R. I. (2013). Using formal verifica-
tion to evaluate human-automation interaction in safety critical systems, a
review. IEEE Transactions on Systems, Man and Cybernetics: Systems,
43,488-503.

Bolton, M. L., & Ebrahimi, S. (2014). An approach to generating human-
computer interfaces from task models. In 2014 aaai spring symposium
series (pp. 92-97). Palo Alto: AAAL

hEnterQuarter —_—
iDrinkOut = False

A iMoneyln = 50
A iMoneyOut = 0

hPressChange
Return

hPickUpDrink
Sz

S3

hPressDrinkButton

iDrinkOut = True
A iMoneyln = 0
A iMoneyOut = 0

Figure 6. Moore machine model of the generated
human-machine interface. Each circle is a state la-
beled with its name (S;—Ss) and the values of the
corresponding system outputs. An arrow indicates a
transition triggered by the action in the arrow’s label.
If an action does not produce a transition from a given
state, then the action is not allowed in that state.

Bolton, M. L., Jimenez, N., van Paassen, M. M., & Trujillo, M. (2014). Au-
tomatically generating specification properties from task models for the
formal verification of human-automation interaction. Human-Machine
Systems, IEEE Transactions on, 44(5), 561-575.

Bolton, M. L., Siminiceanu, R. I., & Bass, E. J. (2011). A systematic
approach to model checking human-automation interaction using task-
analytic models. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 41(5), 961-976.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cam-
bridge: MIT Press.

Combéfis, S., Giannakopoulou, D., Pecheur, C., & Feary, M. (2011). Learn-
ing system abstractions for human operators. In Proceedings of the 2011
International Workshop on Machine Learning Technologies in Software
Engineering (pp. 3-10). New York: ACM.

Degani, A., & Heymann, M. (2002). Formal verification of human-automation
interaction. Human Factors, 44(1), 28-43.

De Moura, L., Owre, S., & Shankar, N. (2003). The SAL language manual
(Tech. Rep. No. CSL-01-01). Menlo Park: Computer Science Laboratory,
SRI International.

DIS, ISO. (2009). 9241-210: 2010. Ergonomics of human system interaction-
part 210: Human-centred design for interactive systems. International
Organization for Standardization (1SO), Switzerland.

Garcia, J. G., Lemaigre, C., Gonzdlez-Calleros, J. M., & Vanderdonckt, J.
(2008). Model-driven approach to design user interfaces for workflow
information systems. Journal of Universal Computer Science, 14(19),
3160-3173.

Heitmeyer, C. (1998). On the need for practical formal methods. In Proceedings
of the 5th International Symposium on Formal Techniques in Real-Time
Fault-Tolerant Systems (pp. 18-26). London: Springer.

Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. London:
Taylor and Francis.

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5), 1045-1079.

Moore, E. F. (1956). Gedanken-experiments on sequential machines. Automata
studies, 34, 129-153.

Parnas, D. L. (1969). On the use of transition diagrams in the design of a user
interface for an interactive computer system. In Proceedings of the 24th
National ACM Conference (pp. 379-385). New York: ACM.

Raffelt, H., Steffen, B., & Berg, T. (2005). Learnlib: A library for automata
learning and experimentation. In Proceedings of the 10th international
workshop on formal methods for industrial critical systems (pp. 62-71).

Rushby, J. (2012). The versatile synchronous observer. In R. Gheyi & D. Nau-
mann (Eds.), Formal methods: Foundations and applications (Vol. 7498).
Springer Berlin Heidelberg.

Tran, V., Kolp, M., Vanderdonckt, J., Wautelet, Y., & Faulkner, S. (2010).
Agent-based user interface generation from combined task, context and
domain models. In Proceedings of the Sth international workshop on task
models and diagrams for user interface design (pp. 146—161). Berlin:
Springer.



