
A Formal Approach to Modeling and Analyzing
Human Taskload in Simulated Air Traffic Scenarios
Adam Houser, Lanssie Mingyue Ma, Karen Feigh Senior Member, IEEE and, Matthew L. Bolton, Member, IEEE

Abstract—In complex systems, like the modern air traffic
system, human operator taskload can have a profound influence
on how well the system performs. Because of the system’s
complexity, however, it can be difficult to determine all of the
situations where taskload issues can arise. Simulation and formal
verification have been used separately to explore human taskload
in complex systems. However, both have problems that limit
their usefulness. In this paper, we describe a formal modeling
architecture designed to enable the discovery of interesting
human operator taskload conditions though the synergistic use
of formal verification and simulation. This architecture formally
represents original simulation constructs using computationally
efficient abstractions that ensure that temporal and ordinal
relationships between simulation events (actions) are represented
realistically. Taskload for each agent is represented based on a
priority queue model where only a limited number of actions can
be performed or remembered by a human at any given time. We
provide an overview of this architecture, discuss its essential fea-
tures, and describe the mathematical foundations needed for its
instantiation. We present insights into its capabilities for finding
interesting taskload conditions by formulating several checkable
specification properties. The implications of this architecture are
discussed in terms of its broader supported analysis method and
directions for future work are explored.

Index Terms—Formal methods, taskload, workload, simulation,
human-automation interaction.

I. INTRODUCTION

HUMAN operator taskload, a measure of the number

of tasks a human operator is expected to perform at

a given time, is critical to the safe and efficient operations of

complex systems such as the air traffic system. This is because

taskload is a good indicator of human operator workload [1],

where excessive taskload/workload leads to human error and

reduced performance. However, determining when taskload can

become excessive and what the performance implications of

that taskload are can be very challenging because of the many

different people, machines, and environmental conditions that

can interact during their operation. Running experiments or

tests with real world systems and human subjects can be too

time consuming and expensive to explore the many operating

conditions that can occur. To address this, researchers have

been building simulation environments such as Work Models

Adam Houser is with the Department of Systems and Industrial Engineering,
University at Buffalo, State University of New York, Amherst, NY

Lanssie Mingyue Ma is with the Daniel Guggenheim School of Aerospace
Engineering in Computational Science and Engineering, Georgia Institute of
Technology, Atlanta, GA

Karen Feigh is with the Daniel Guggenheim School of Aerospace Engineer-
ing, Georgia Institute of Technology, Atlanta, GA

Matthew L. Bolton is with the Department of Systems and Industrial
Engineering, University at Buffalo, State University of New York, Amherst,
NY 14260 USA e-mail: mbolton@buffalo.edu

that Compute (WMC) [2] that allow human operator taskload to

be analyzed in a variety of air traffic simulations. While more

flexible than human subject experiments and real world tests,

these simulation types are not exhaustive and can thus still

miss potentially dangerous or performance-critical operating

conditions that did not happen to occur in one of the explored

scenarios. Formal verification represents an analysis approach

that specifically addresses this limitation of simulation.

A. Formal Verification
Formal verification is an analysis technique that falls within

the discipline of formal methods. Formal methods are well-

defined mathematical languages and techniques for the specifi-

cation, modeling, and verification of systems [3]. Specification

properties mathematically describe desirable system conditions.

Systems are modeled using mathematically-based languages,

and verification then mathematically proves whether or not

the model satisfies the specification. Model checking is an

automated approach to formal verification [4], whereby a

formal model describes a system as a state transition model:

a set of variables and transitions between variable states.

Desirable specification properties are usually represented in a

temporal logic [5]. Verification is performed automatically by

exhaustively searching a system’s statespace to determine if

these properties hold. If they do, the model checker returns a

confirmation. Otherwise, a counterexample is produced, which

shows how the specification violation occurred as a trace

through the statespace of the model.
Formal verification has been successfully used to evaluate

human-automation interaction [6]. However, little work has

been done to investigate human operator workload or taskload.

While Mercer and Goodrich, et al. ([7], [8]) have investigated

ways of formally modeling workload, they have not used these

methods in formal verification analyses.
While powerful, formal verification techniques such as

model checking suffer from combinatorial explosion, where

the statespace grows exponentially as additional components

are added to the model [4]. This can quickly lead to a model

that is too big to be verified. Model checking is also limited

by the expressive power of its notations, where models cannot

contain non-linear arithmetic or other typical programming

constructs (such as loops or type casting). As such, formal

verification scales badly when compared to simulation and is

limited in what system behavior it can consider.

B. Formal Verification and Simulation
Some degree of success has been found in using formal

verification synergistically with simulation to exploit the

SpeciSpeciSpecificationsWMC Model

Translation Formal Model

Model Checking

Translation 2

Counterexample /
Model Trace

Generated
Scenarios

WMC
Simulation

Simulation
ResultsWMC Scenario

Simulation
Trace

Fig. 1. Method for the synergistic use of WMC simulation and model checking.

exhaustive capabilities of model checking with the scalability of

simulation. Specifically, formal verification is used selectively

to evaluate bounded elements of a simulated system [9]–[11].

Of particular interest to this project is work that has used

simulation traces as a means of creating formal models of a

scope small enough to avoid scalability problems (for example,

see [12]–[14]). However, these analyses are limited in that they

only check properties about the actual trace and thus do not

account for any system behavior beyond what is already in

the trace. There is therefore a need to use formal verification

and simulation together more effectively, employing formal

verification to explore the space around simulation traces rather

than just the traces themselves.

C. Our Method

We are developing an analysis approach that will allow

the WMC simulation to be used synergistically with formal

verification. Specifically, we want to give analysts the ability to

use model checking’s exhaustive search capabilities to explore

the region around a simulated air traffic scenario and find

excessive human taskload conditions worthy of deeper, high-

fidelity simulation analysis. To accomplish this, our method

uses the Symbolic Analysis Laboratory (SAL) [15] to model

check the space around WMC simulation traces.

This method (see Fig. 1) works as follows:

1) A WMC work model (which describes the agents in a

simulation, along with the actions they perform and the

resources they modify) and a scenario (which describes the

initial conditions that represent a specific air traffic situation

and future events that can occur) is run through a WMC

simulation. The simulation produces a trace showing exactly

how that scenario evolved.

2) The work model, scenario, and simulation trace are then

automatically translated into a formal model representing

the simulation over a constrained period of time. In this

model, the timing of actions (when they occur and for

how long they occur) can include analyst-defined variance,

nominally on the order of one to three seconds, to allow

the model checker to explore the performance space around

the modeled scenario. The translator also generates a set of

specification properties designed to find interesting taskload

conditions in the model.

3) A model checker is then used to explore the formal model

to generate traces illustrating violations of specifications.

4) The traces are then translated back into WMC scenarios

for deeper analyses in its simulation environment.

D. Objectives

To be able to formally model WMC concepts with our

method (Fig. 1), we needed a formal modeling architecture.

The architecture needed to support all of the following: (a)

Modeling real-valued time: Because our method allows analysts

to evaluate how variance in timing affects taskload, we needed

the capability to formally model real-valued time; (b) Modeling
taskload: WMC can support a priority-queue-based approach

to modeling human taskload and control how humans switch

between tasks and actions [16]. Thus, our architecture needed to

be able to replicate the taskload and task switching behavior of

WMC; (c) Computational efficiency: Because of the scalability

limitations of model checking, the architecture must represent

WMC concepts in a computationally efficient manner. In this

paper, we describe a formal architecture that satisfies these

requirements. We first discuss the relevant WMC concepts

the architecture needed to encapsulate. We then discuss our

architecture and how it has been realized. We also describe

the specification properties that we can use with the model to

generate traces. Finally, we discuss how we plan to use our

architecture in future evaluations of air traffic scenarios.

II. WMC

Work Models that Compute (WMC) is a simulation frame-

work that dynamically models complex, multi-agent concepts

of operations and work domains [17]. WMC attempts to model

the collective work of a set of agents [18]. It consists of two

parts: a work model that describes the work of a given domain,

and an engine that simulates the work model [17]. Each work

model is comprised of three primary elements: agents, actions,

and resources. Resources are defined as a collection of specific

elements of the work environment which can be sensed and

manipulated by the agents. Actions manipulate resources, are

linked to a specific agent, and represent the work at its most

atomic unit. The work model specifies each action’s frequency,

priority, duration of resources it needs or manipulates, and

which agents are involved [19]. Agents serve the dual purpose

of organizing actions and adding a layer of dynamics to the

prescribed action sequence by placing limits on both the number

of simultaneously performed actions and their priorities [18].

A scenario pulls all elements of work models, agents, actions,

and resources into a scenario simulation. This can be used

to generate an action trace and other higher-level metrics of

interest. The simulation engine works on a hybrid timing

mechanism that allows WMC to incorporate features of both

continuous time and event-based simulation. This enables

WMC to simulate dynamic systems (such as aircraft dynamics)

and event -based agents (such as pilot models) [19], [20].

For human agents, WMC can model human taskload [16].

Each modeled human agent has two priority queues: one

representing actions that are active (currently being executed)

and one representing actions that are inactive. Inactive actions

can have two designations. Those that have never been executed

are designated as waiting, and actions that were previously

active but are now inactive are designated as delayed. The

active queue has a limited capacity which results in actions

transitioning between queues. If a human agent is assigned new

actions, those actions are put in the inactive queue and given

the waiting designation. If there is room in the active queue,

the highest priority actions (those with the highest explicit

priority with the shortest execution time as determined by the

action’s resources) are moved to the active queue. If there are

active actions with lower priorities than those in the inactive

queue, those lower-priority actions are moved to the inactive
queue and designated as delayed, and the higher priority actions

are moved up into the active queue. As actions are finished,

they are removed from the active queue and rescheduled for

later (if they occur again) or to never occur again. Within this

infrastructure, taskload can be described as the complete set

of actions in all of an agent’s queues.

III. FORMAL MODELING ARCHITECTURE

To formally model these WMC concepts, we have created

an abstract architecture (Fig. 2). In this, the formal model

is represented by three synchronously composed modules: a

Scheduler, Actions, and Agents. The Scheduler keeps track

of modeled time, determines when actions are assigned to

agents, and coordinates the behavior of the other modules

based on the scheduler’s status. The Actions module is actually

a collection of synchronously composed action submodules that

represent actions from the WMC simulation. Similarly, Agents

is a collection of synchronously composed agent submodules

that represent agents from the WMC simulation.

The Actions and Agents modules communicate with each

other via arrays of action and agent data types (actions and

agents from Fig. 2), where each action and agent is associated

with an instance of its respective data type. The action data

type contains all of the variables shown in Table I, while the

agent data type is defined by the variables in Table II.

Our architecture does not explicitly represent the priority

queues underlying WMC agents. Rather, the state of these can

be inferred by reasoning over the array of action data types. To

do this efficiently, we make use of λ calculus operations so that

we can reason about sets [21] of actions. In this sense, a set is a

Actions

Agents

Action

Agentactions

Scheduler

agents

assignment
status

globalTime

Fig. 2. Formal modeling architecture used to represent WMC concepts.

TABLE I
VARIABLES THAT DEFINE THE ACTION DATA TYPE

Variable Description

id A unique action identification as an integer from 1 to N, where
there are N total actions.

agent The identification of the agent responsible for the action.
state The priority queue location and status of the action: whether

it is in active, waiting, or delayed, or notAssigned (the state
of an action that has yet to be assigned or has been finished
and rescheduled).

priority The priority level of the action as a bounded integer.
time The time left for the action to finish executing (initial times

are determined by the time it takes to set an action’s resources
in the original WMC model).

update The next time the action will be assigned (this is determined
by the observed timings in the simulation trace).

TABLE II
VARIABLES THAT DEFINE THE AGENT DATA TYPE

Variable Description

id A unique agent identification as an integer from 1 to M,
where there are M total agents.

activeCapacity The agent’s active priority queue capacity.
activeCount The number of active actions the agent is responsible

for (the number of actions in the agent’s active priority
queue).

minActive The action data type for an active action the agent is
responsible for that has the minimum priority (smallest
priority and longest time) of all such actions.

maxInactive The action data type for a waiting or delayed action (an
action in the inactive queue) the agent is responsible
for that has the maximum priority (greatest priority and
shortest time) of all such actions.

mapping of action ids to Boolean values actionset : actionID→
Boolean. Such sets use λ operations to define this mapping.

For example, the empty set ∅= λ (i ∈ actionIDs) : False. This

can be interpreted as: for all possible values of action id i, i is

not in the set (i maps to False).

Our architecture also abstracts away the WMC concept of

resources in service of computational efficiency. However, what

resources are being modified at any given time can still be

inferred from which actions are executing at that time.

The following describes the details of each of the elements

in our architecture.

A. Scheduler

The Scheduler module is responsible for maintaining the

clock and communicating the globalTime to the other modules.

assigning shuffling doing

actionsArray' ≠ actionsArray

assignment' ≠ ø

assignment' = ø

actionsArray' = actionsArray

Fig. 3. State transition system representing the scheduler’s status. Note that
an ′ on a variable indicates that variable’s value in the next state. For example
actions′ �= actions is checking whether actions will change in the next state.

It also indicates when notAssigned actions with update times

at the current globalTime are ready to be executed via the

assignment variable. Finally, the Scheduler uses its status to

coordinate the behavior of the other modules.

The Scheduler’s status transitions between its three states

using the logic in Fig. 3. Specifically, it starts out assigning,

where it indicates which actions are ready to be executed. After

assigning, it automatically transitions to shuffling. When the

Scheduler is shuffling, the action modules are able to reassign

the execution state of assigned actions (move them between

priority queues). While shuffling, the Scheduler monitors the

state of actions to see if any changes will occur in the next state.

If any changes do occur, the Scheduler remains shuffling. If

there are no changes, the Scheduler status transitions to doing.

If the Scheduler’s status is doing then, if in the next state

there is nothing to assign, the status transitions to shuffling.

Otherwise it transitions to assigning.

If the Scheduler is assigning it communicates which actions

are ready to be performed by computing a λ calculus set. This

set is defined as

assignment = λ (i ∈ actionIDs) :

actions[i].update = globalTime
∧actions[i].state = notassigned.

(1)

This can be interpreted as the set of all action ids such that

the associated actions are currently notAssigned and have an

update time equal to the current globalTime.

The Scheduler uses timed automata [22], [23] to represent

globalTime as a real-valued quantity. If the Scheduler status

is doing then globalTime is increased to the minimum value

representing the time it takes to finish any of the active actions

or the next update time of any of the notAssigned actions.

B. Agents

The Agents module is a composition of synchronously

composed agent submodules, where each agent manages the

values of its corresponding agent data type. Conceptually, each

agent is responsible for keeping track of the number of its

active actions (activeCount). It also provides information each

action will need for moving between execution states (moving

between priority queues) in the form of its minActive and

maxInactive variables.

To compute activeCount an agent submodule will use the

formula shown in (2) with actionState = active. Note that

in the formal model, the code for doing this operation is

automatically generated with a known bound on the number

of possible actions (N). This operation is therefore linear and

scales efficiently. It is also important to note that this same

equation (2) can be used to compute the number of actions that

are in the waiting and delayed priority queues, even though

these are not explicitly represented in the formal model.

To compute minActive and maxInactive, the agent first

uses λ calculus to compute sets containing all of the action

ids that satisfy the minimum active and maximum inactive

criteria (minActiveSet and maxInactiveSet, respectively). The

minActiveSet is computed as shown in (3) where, for all action

ids i in a set of actionIDs, i is in the set if the action with id = i
is active, associated with the given agent, and has a priority less

than or equal to all other active actions associated with the agent.

maxInactiveSet is computed as shown in (4) where, for all

action ids i in a set of actionIDs, i is in the set if the action with

id = i is delayed or waiting, associated with the given agent,

and has a priority greater than or equal to all other waiting
or delayed actions associated with the agent. With these sets

computed, the actions minActive and maxInactive are selected

non-deterministically from the action ids in minActiveSet and

maxInactiveSet respectively. This allows for non-determinism

in what actions will ultimately be active or inactive at any

given time if the actions have the same priority.

C. Actions

Each action within the Actions module is responsible for

managing the values in the associated action data type in

response to the Scheduler’s status and the global time. For any

given model state, each action behaves as follows:

• If status is doing and that action’s state is active, then the

action’s time is decremented based on the amount elapsed

since the clock was last updated. If doing this means that

the action has finished (that time becomes 0), the action’s

state is set to notAssigned and its update time is set to the

action’s next update time from the original simulation trace.

To add non-determinism to the timing of actions, variance

can be included in the update time.

• If status is assigning and the action is in the set of assigned

actions, then the action’s state is set to waiting and the

action’s time is updated. Non-deterministic amounts of time

variance can also be added in this assignment.

• If status is shuffling, then:

– If the action’s state is waiting or delayed and it is equal

to its agent’s maxInactive action and either the action has

a higher priority than its agent’s minActive action or its

agent’s active capacity has not been reached, then the

action’s state is set to active.

– If the action’s state is active and it is equal to its agent’s

minActive action and the agent’s active capacity has been

exceeded, then the action’s state is set to delayed.

D. Analysis Capabilities

Our architecture gives us the ability to model sections of

simulation traces with included variance in the timing of actions.

This is useful because it gives us the ability to reason about

taskload in specification properties that allow us to assert

the absences of potentially problematic conditions for human

cardinality(actionState) =

{
1, if actions[1].agent = agentID∧actions[1].state = actionState
0, otherwise

+ ...+

{
1, if actions[N].agent = agentID∧actions[N].state = actionState
0, otherwise

(2)

minActiveSet =λ (i ∈ actionIDs) : actions[i].agent = agentID∧actions[i].state = active

∧∀(j ∈ actionIDs) :⎛
⎝(actions[j].agent = agentID

∧actions[j].state = active

)
⇒

⎛
⎝ actions[i].priority < actions[j].priority

∨
(

actions[i].priority = actions[j].priority
∧actions[i].time > actions[j].time

)⎞⎠
⎞
⎠ (3)

maxInactiveSet =λ (i ∈ actionIDs) : actions[i].agent = agentID∧ (actions[i].state = waiting∨actions[i].state = delayed)

∧∀(j ∈ actionIDs) :⎛
⎝
⎛
⎝ actions[j].agent = agentID

∧
(

actions[j].state = waiting
∨actions[j].state = delayed

)⎞⎠⇒
⎛
⎝ actions[i].priority < actions[j].priority

∨
(

actions[i].priority = actions[j].priority
∧actions[i].time < actions[j].time

)⎞⎠
⎞
⎠ (4)

agents. We can then use these to generate counterexamples,

allowing us to use our method (Fig. 1) to create WMC scenarios

to examine the conditions found in the counterexample in the

simulation. For our current purposes, we are interested in

specifications that concern excessive workload conditions and

conditions where people may drop or forget actions.

For excessive workload, we are concerned with finding

conditions where the human operator’s active priority queue

is at capacity [16]. We can use linear temporal logic to assert

that the active queue for a given human agent with id = i will

never reach capacity with

G¬
⎛
⎝(status = doing)

⇒
(

agent[i].activeCapacity
�= agent[i].activeCount

)⎞
⎠ , (5)

where this can be interpreted as: for all paths through the

model (G) we never want it to be true that if the scheduler

status is doing, then agent i’s activeCount reaches or exceeds

its activeCapacity. Note that we are only concerned with the

capacity of an agent’s queues when the scheduler’s status is

doing because, by design, queue capacities may be exceeded

during nominal assigning and shuffling operations.

By adding a synchronous observer (see [24]), we can also

have a model variable (count) that can count the number

of clock update periods over which a full active queue is

maintained. This can allow us to specify that an active queue

should never remain full for over K updates of the clock as

G¬(count ≥ K) . (6)

Thus, we can generate traces illustrating how a human agent

remains at maximum active capacity over K periods.

There are several different reasons why a human operator

may fail to perform an action. First, if the human’s working

memory is exceeded (indicated by excessive actions that are

waiting or delayed) he or she might forget an action. We can

assert the absence of this condition as follows:

G¬
⎛
⎝(status = doing)

⇒
((

cardinality(waiting)
+cardinality(delayed)

)
≥ max

)⎞
⎠ , (7)

where max is the maximum capacity of the inactive queue.

A human may also forget an action if it remains in working

memory (waiting or delayed) for too long [25]. We can specify

that this should never occur as

G¬
⎛
⎝(actions[j].state �= notAssigned)

⇒
((

globalTime
−actions[j].update

)
≥ timeMax

)⎞
⎠ , (8)

where timeMax is an analyst-specified waiting time that an

action should not exceed.

IV. DISCUSSION

The presented architecture allows us to formally represent all

of the relevant WMC concepts while satisfying our objectives.

(a) It uses timed automata to represent real-valued time and

allows for sensitivity analyses of WMC concepts based on

variance in the timing of actions; (b) It allows taskload to be

modeled by having the model reason over an array of actions,

each with its own state and associated with a different agent;

and (c) By using λ operations over the set of actions and

by abstracting away WMC details unimportant to the formal

analyses, the architecture is computationally efficient.

Additionally, a number of specification properties can be used

to reason about taskload for use in generating counterexamples

for later use in scenario creation. We currently have a working

version of this architecture operating with the WMC simulation

and the infinite bounded model checker in SAL.

This work was only focused on the architecture required to

realize our method (Fig. 1). Future work will complete the

method and use it to evaluate realistic air traffic scenarios.

A. Translation Processes

We have already developed a prototype translation process

that converts WMC trace, scenario, and work model information

into a formal model that uses the architecture presented here.

This method is currently being used to evaluate existing WMC

models and scenarios. Future work will focus on refining this

translation process to reduce the amount of human analyst

intervention required. Additionally, in current efforts, all reverse

translation (Translation 2 from Fig. 1) must be done manually.

Future efforts will focus on automating this translation process.

As this project progresses, these translations will benefit from

the use of standardized WMC XML models.

B. XML Models

The current implementation of the method evaluates SAL

models generated from WMC action traces. In future work,

we hope to rely less on action traces and offer a flexible

mechanism for developing scenarios and simulations with

an XML description of the work model and scenario. The

XML Specification would create a universal starting point for

modeling new systems of interest and allow rapid changes to

existing work models. Having such an abstracted specification

would support collaborators or general users who are unfamiliar

with WMC or SAL but more familiar with XML markup.

Additionally, an XML Specification would allow for XML files

of work models and scenarios to be translated back and forth

between WMC simulations and SAL experiments more easily.

The XML Parser currently translates XML into WMC, and

other directions are being developed now.

C. Realistic Application

We will use the completed method (Fig. 1) to evaluate

realistic air traffic scenarios. In particular, we will examine the

different scenarios from [26] which represent three simulated

aircraft arriving into Amsterdam Airport Schiphol RWY18R

under different distributions of authority, autonomy, and respon-

sibility between air and ground-based operators. In particular,

the scenarios explored in [26] did not take the limitations

of human operator taskload into account. Thus, our future

efforts will use the formal architecture here and the associated

formal verification from the method to generate scenarios that

will allow the simulation to explore how performance changes

based on different operator memory limitations (priority queue

capacity restrictions) and different amounts of variance between

the timing of actions.

ACKNOWLEDGEMENT

This work was supported by the grant “Scenario-Based

Verification and Validation of Autonomy and Authority” from

the NASA Ames Research Center under award number

NNX13AB71A.

REFERENCES

[1] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research,” Advances in
psychology, vol. 52, pp. 139–183, 1988.

[2] A. R. Pritchett, S. Y. Kim, and K. M. Feigh, “Measuring human-
automation function allocation,” Journal of Cognitive Engineering and
Decision Making, vol. 8, no. 1, pp. 52–77, 2014.

[3] J. M. Wing, “A specifier’s introduction to formal methods,” Computer,
vol. 23, no. 9, pp. 8, 10–22, 24, 1990.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. Cam-
bridge: MIT Press, 1999.

[5] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, A. R. Meyer, M. Nivat, M. Paterson,
and D. Perrin, Eds. Cambridge: MIT Press, 1990, ch. 16, pp. 995–1072.

[6] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using formal verification
to evaluate human-automation interaction in safety critical systems, a
review.” IEEE Transactions on Systems, Man and Cybernetics: Systems,
vol. 43, no. 3, pp. 488–503, 2013.

[7] J. Moore, R. Ivie, T. Gledhill, E. Mercer, and M. Goodrich, “Modeling
human workload in unmanned aerial systems,” in 2014 AAAI Spring
Symposium Series. Palo Alto: AAAI, 2014, pp. 44–49.

[8] R. Stocker, N. Rungta, E. Mercer, F. Raimondi, J. Holbrook, C. Cardoza,
and M. Goodrich, “An approach to quantify workload in a system
of agents,” in Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems. Liverpool: IFAAMAS,
2015.

[9] A. J. Hu, “Simulation vs. formal: Absorb what is useful; reject what
is useless,” in Proceedings of the Third International Haifa Verification
Conference. Berlin: Springer, 2008, pp. 1–7.

[10] J. Yuan, J. Shen, J. Abraham, and A. Aziz, “On combining formal and
informal verification,” in Computer Aided Verification. Springer, 1997,
pp. 376–387.

[11] G. Gelman, K. M. Feigh, and J. Rushby, “Example of a complementary
use of model checking and agent-based simulation.” Piscataway: IEEE,
2013.

[12] A. Yasmeen, K. M. Feigh, G. Gelman, and E. L. Gunter, “Formal
analysis of safety-critical system simulations,” in Proceedings of the 2nd
International Conference on Application and Theory of Automation in
Command and Control Systems. IRIT Press, 2012, pp. 71–81.

[13] D. A. Stuart, M. Brockmeyer, A. K. Mok, and F. Jahanian, “Simulation-
verification: Biting at the state explosion problem,” IEEE Transactions
on Software Engineering, vol. 27, no. 7, pp. 599–617, 2001.

[14] X. Chen, H. Hsieh, F. Balarin, and Y. Watanabe, “Automatic trace
analysis for logic of constraints,” in Proceedings of the Design Automation
Conference. IEEE, 2003, pp. 460–465.

[15] L. de Moura, S. Owre, and N. Shankar, “The SAL language manual,”
Computer Science Laboratory, SRI International, Menlo Park, Tech. Rep.
CSL-01-01, 2003.

[16] A. Pritchett and K. Feigh, “Simulating first-principles models of situated
human performance,” in Proceedings of the IEEE First International
Multi-Disciplinary Conference on Cognitive Methods in Situation Aware-
ness and Decision Support. Piscataway: IEEE, 2011, pp. 144–151.

[17] A. R. Pritchett, “Simulation to assess safety in complex work environ-
ments,” J. D. Lee and A. Kirlik, Eds. New York: Oxford University
Press, 2013, ch. 22, pp. 352–366.

[18] A. R. Pritchett, K. M. Feigh, S. Y. Kim, and S. K. Kannan, “Work
models that compute to describe multiagent concepts of operation: Part
1,” Journal of Aerospace Information Systems, vol. 11, no. 10, pp. 610–
622, 2014.

[19] G. E. Gelman, “Comparison of model checking and simulation to
examine aircraft system behavior,” Ph.D. dissertation, Georgia Institute
of Technology, 2012.

[20] A. R. Pritchett, S. Y. Kim, and K. M. Feigh, “Modeling human–
automation function allocation,” Journal of Cognitive Engineering and
Decision Making, vol. 8, no. 1, pp. 33–51, 2014.

[21] G. Smith and L. Wildman, “Model checking z specifications using sal,”
in ZB 2005: Formal Specification and Development in Z and B. Springer,
2005, pp. 85–103.

[22] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[23] B. Dutertre and M. Sorea, “Timed systems in SAL,” SRI International,
Tech. Rep. NASA/CR-2002-211858, 2004.

[24] J. Rushby, “The versatile synchronous observer,” in Specification, Algebra,
and Software, S. Iida, J. Meseguer, and K. Ogata, Eds. Springer, 2014,
pp. 110–128.

[25] D. C. McFarlane and K. A. Latorella, “The scope and importance of
human interruption in human-computer interaction design,” Human-
Computer Interaction, vol. 17, no. 1, pp. 1–61, 2002.

[26] M. IJtsma, A. R. Pritchett, and R. P. Bhattacharyya, “Computational
simulation of authority-responsibility mismatches in air-ground function
allocation,” p. 6 pages, 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

